AD-AO91 029 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A==ETC F/6 9/2
ON MUTATION, (V)
AUG 80 A T ACREE DAAG29-80-C-0120
UNCLASSIFIED GIT-1C5-80/12 NL
1.2 '

l‘.slg 25
o s
_ :‘:'3 m —

Ih2s i e

=
I

———

MIZBROCOPY RESOLUTION TEST CHART f
NATIONAL BUREAU OF STANDARDS-1963-A

e e W g,

T e o Y

| Rl

4

{ fed Gomd GEmm e

LS
-

+Hork supported in part by U.S. Army Research Office, Grant

[VELZ |

-] ferr-tes-gartz. /
///‘-\{..____ﬁ e m =
QL il MII'ATIm.}r

,(Aﬂen Troy/Acree, J.:’

/ LY AUETNSPVSIRPI

X

T st |
N

*School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332

JUR RS
rv—

AAG29-80-C-8128 _
NQ‘C"/»V"/" ‘.'/ TP

\-

and by Office of Naval Research, Grant #N00014-79-C-0231.

DISTRIBUTION STATEMENY A

Awgvgd for public release;
Distribution Unlimited

L1004V

Ly

g ON MUTATION
i
3 -
]
i
A THESIS
i Pregsented to

The Faculty of the Division of Graduate Studies

by
Allen Troy Acree, Jr.

In Partial Fulfillment

P oA by AP A M 3V g W YN b vy R 310y G b g k0 22

f of the Requirements for the Degree of i

{ 1 Doctor of Philosophy

i : | in the School of Information and Computer Science

Accession For

[NTIS GRA&I i ‘
0

; DTIC TAB
Georgia Institute of Technology | Unannounced o |
, Justification.______ J
Augu‘t' 1980
By.
| Distribution/

| Jxa_ilabil ity Codes
' jAvail ‘ind/or
f) Disgt Special

Al

P o oAt coint b

ON MUTATION

Approved:

Luclio cChiaravigifo—

/? . g b

"l'/" . k} . (\’T }‘/'/ " .
Kaa Ky =t oo e
Richatd LeBlanc

Date approved by Chairman gZZ”

|
\

i
1
1

|

!

5 ?
I §
M
|
TABLE OF CONTENTS -
|
ACKNOWLEDGEMENTS ceeseseccccososccsssssasccssscsccsscssccsncelV [
LIST OF TABLES:cecececccscscvesccscsosccsscoscstsoscsscscsssonccseV :
LIST OF ILLUSTRATIONS..cecececececcacscscsossccssacsssssaaVi |
Chkapter
~ I. INTRODUCTION TO PROGRAM VALIDATION..cecccscsccel l
i Automated Aids for Program Validation ’
i Other Approaches to Validation
II. CONCEPTS OF MUTATION ANALYSIS..cceecsccccsccssll
i Conditional Correctness l'
Mutagenic Operators ;
Competent Programmer Assumption |

i Coupling Effect
Equivalence of Mutants

III‘ THB coBOL MUTATION SYSTEM.....O...............24

¢ Design of Mutation Systems

! A Case Study

Cobol as a Language of Study
Programs used in the Study
Test Data Generation

k-Gl amh S G i o o8 gt gt

“ Empirical Complexity of Mutation Analysis
Iv. EXPERIMENTS ON THE COUPLING HYPOTHESIS:ececeee35

!: Random Pairs of Mutants (-,

| Correlated Pairs of Mutants
: Higher Order Mutation

Coupling and Complexity .

! |
v. BQU:VALENCB o’ MUTANTSO.....C.........0..'....51 : 1
| Human Evaluation of Equivalence

Pairs of Equivalent Mutants

e —y

vI. SUBSBTS OF NUTA“TSO....‘000000000000000000000057

Random Seiection of Mutants
Efficiency of Mutagenic Operators

VII. CONCLUSIONS AND SUGGESTIONS FOR

FURTHER STUDY.ccevscccscsccscsscsccccascssccassaebd
APPENDIX A == CMS.1 Users' Manual.ccceccceccccsccsscscscceeebd
APPENDIX B =~ CMS.l Internal SpecificationS.....ececeeceoso87
APPENDIX C == CMS.]l SCripPteccecccesccncrcccccccccnccansseall8
APPENDIX D =~ FMS.l Script on CMS.l1 Module@..cceeeccoecsesall8
APPENDIX E ~- Statistical Background..cccceeceococscscessl3l
APPENDIX F == Listings of Programs Studied..ecccececeeec..140

BIBLIOGRAPHY..........‘......‘.................‘.........175

ACKNOWLEDGEMENTS

The author would like to thank tﬁe Graduate Division
for the waiver of certain format requirements so that this
thesis could be prepared on the PRIME 400 under the RUNOFPF
text processing system. The author also wishes to express
his gratitude to Prof. Frederick Sayward for bhkis helpful
comments on the. preliminary design of the Cobol Mutation
System, as well as for advice on the management of its
implementation, and to Jeanne Hanks for her help in
implementing the system and its later functional
enhancements, and especially to his advisor, Prof. Ricrard
DeMillo, for his thoughtful guidance and encouragement.
This research was supported in part by the US Army Institute
for Research in Management Information and Computer Science,

ARO Grant No. DAAG22-78<0121 and the Office of Naval

Research, Grant No. NO0014-79-C=~02131,

Table

Table

Table

Table

Table

Table !

Table

Table

Table

Table 10.
Table 11.
Table 12,
Table 13.

LIST OF TABLES

Effects of Test Size, Selection Method,
and Program on TesSt AdeqUACY.cccceccccvesccscacsl

ANOVA Table for
Size-~Selection=Program Experiment...ccececcccccee8

Mutation Statistics on the Six Programs....e...32

50,000 Random Pairs of Mutaats
for Bach Program.....O...........0.............38

10,000 Correlated Pairs of Mutants
fot BaCh Ptogtam.......O..0000000000.000000000041

20,000 Mutants of Order 2,3,4, and 5
fot EaCh Program.........Q.‘.0........0........43

Average Statements Executed Before Failure
on Programs with Multiple Order Mutations......44

Comlexity and Coupling.cecceccscccevscssscecscecdd
Human Evaluation of EquivalenC@ececcccccsccsceedl
Pairs of Equivalent MutantS.c..cecceccccccocsseedd
Reduced Power Mutation AnalysSiS..cccccceccccess58
Test Strength Using 10% of MutantS..eecccscecesed9

Mutagenic Operator Efficiencies..cecccccecccsesbl

T

ot dal

B Geglr e v, ”~' . -
s ‘.J\.;hm;—%«?f-wz -4
!w- - Ry 28

Figure 1.

Figure 2.

Figure 3.

LIST OF ILLUSTRATIONS

Log-Log Graph of Program Size vs. Number
of Mutants and Number Equivalent....ccccceees.34

Inverse of Time to Failure
vs. Number of Seeded ErrorScccccccccscccnessssdd

95% Confidence Intervals on 2z*100,000
vs, Number of BrancheS..cccccccscescsscscescssedl

= d

p——
| S—
et ottt s

MU
e il e i

Pt iRt st ieliiiiogeib i ivcmi

ALK Jucuipeleiibgpac.

e o N

CHAPTER I

INTRODUCTION

Program testing has been practiced as 1long as has
programming itself, in spite of the general confession that
testing can never prove in any absolute sense that a program
is correct. Two facts are responsible for the popularity of
testing. The first is that testing has a tendency ¢to
uncover program errors, and that the more systematic the
testing, the stronger this tendency. The second is that a
program that is not completely correct is not necessarlly
unreliable in a given operating environment, and that even a
program that is not completely reliable wili usu&lly not be
completely worthless to its users. Those responsible for
software system development are charged with deéiding how
much they are willing to pay for a given increase in
reliabiiity. The challenge for research is therefore to
produce a testing method that 1is (1) more effective at
uncovering errors and (2) less expensive to apply. Mutation
analysis has been put forward as such a method (1,11,12,5].
Working mutation systems have demonstrated that mutation
analysis can be performed at an attractive cost on realistic

programs. (See Appendices A-D.) In this work, the

effectiveness of the method is studied by experiments with

programs in the target application spaces. Most of our

target programs are in Cobol. Cobol was chosen as a !

language of study for several reasons. A pilot system had

already been implemented for Fortran [5,11], and preliminary
results on testing small numerical subroutines were !
encouraging. A more complete Portran system was being

developed concurrently with the development of the Cobol

PP TNy R SRV SR e

system on which this work is based. We were interested in

knowing if the mutation concept would be as useful in a 1 h
} language like Cobol as it had bgen in Fortran, with Cobol’'s i |
different concepts of data structures, and with input and _ ;
output, whick had never been included in the Fortran j
systems. ([19] For a description of the Cobol system and its k
-l

treatment of the data division and input and output, see

Appendix A. We were also interested in a system that would J

allow us to <collect empirical data on programming and
testing practice and effectiveness. Since Cobol 1is widely
used, many programs are avalilable for study. Since

1 t programming in Cobol is often done under strict

‘i) regimentation, it was expected that we can obtain complete
| packages consisting of programs along with their test data -
and error histories, [j

Software system development has been described in [22] f
as a sequence of steps leading from problem definition to
software, withk corresponding validation tasks relating the

result of each step to previous steps. The major steps are

- e - et

(1) System requirements definition

(2) System functional specifications
(3) Software requirements definition
(4) Software functional specifications

(5) Software implementation

The mutation analysis methodology examined in this
work has as its goal validation of the last stage, software
implementation. As such it overlaps some proposed
validation methods, and compléments others. Tﬁe following

sections outline some of these techniques.

Automated Aids for Software Validation

The present work deals with mutation anélysis, which
is an automated aid for software validation. It is useful
to survey several such aids designed for related purposes.
All of these tools have as their goal an increase in
confidence that a given software product will function as
desired under normal operating conditions.

Static Code Examination Tools.
The software can be examined statically (without execution)
for some‘types of errors.,

Syntax Checkers ~ Compi_ers. The use of a compiler to
detect syntax errors is so common that we usually do not

think of it as a validation tool. The errors that are

detectable by a simple syntax check are usually 1limited ¢to

A

S e e e

RS

those such ;s the use of a variable of one type where
another type is required, or the misspelling of a variable
name, resulting in an undeclared variable, or parameter
mismatck in subroutine calls (34]). Languages such as
Fortran that permit implicitly declared variables and
separate subroutine compilation restrict ¢the amount of
error~-detection that a compiler can do.

Standards Enforcers. Some Fortran compilers can be

invoked with optional parameters that force the compiler to
treat undeclared variables as errors (28], This is an
example of the use of auéomatic verification of
extra=-syntactic rules called standards that are thought to
be useful in avoiding the 1introduction of errors into
software in the first place. These standards may have the
form of additional syntax rules (e.g. all variables must be
declared), the deletion of otherwise legal program
constructs (e.g. ALTER or GOTO), or naming or documentation
conventions.

Structural Analysis. A more sophisticated form af
static analysis can give some information about the dynamic
behavior of a piece of software. Structural analysis by a

system such as DAVE [24,25) can produce diagnoses such as

(1) The variable X 1is referenced before it is
defined along all flows of control in the module.

(Always indicates an error.)

-'J."

e RSN A “‘*—-—w
-l — g s = - - e :

v 7)

e

L e ot

P 4

(2) The variable X is referenced before it is

defined along some flows of control in the module.
(Indicates an error, if any of those control paths

are actually executable.)

(3) The variable X 1is defined but not later
referenced along any control path. (This
indicates an inefficiency, at best, and more

likely a design flaw.)

The Path Analysis strategy studied by Howden (16] |is

an attempt to partition test cases into domains, each of
which forces the execution of some particular .logical path
through the program.

Dyramic Evaluation Tools

In ptinciple,'anything that can be 1learned about a
program can be inferred from the code and the environment in
whick it 1is to be run, However, it 1is wusually more
economical to stop looking at the program at some point and
start looking at its results. We can imagine programs whose
input domains are small finite sets. Such programs can be
completely validated by exaustive testing. However, in
practice this cilass of programs is so small that exaustive

testing is usually not a useful option.

Random or Partlallz Random Test Data, Tests with

T

! .‘-{: _‘_‘L‘(“;’, ;*'u'a‘,:*"
”w.

randomly generated test data are appealing because of their
ease of implementation. One would like, for instance, to be
able to specify a probability distribution on the inputs of
a program and automatically generate a test data set of the
desired size. 1If the distribution of inputs in the software
system's actual operation environment is known, one could
then actually estimate the statistical reliability of the
software. Here "reliability" means the probability that the
software will function in its operating environment for a
given period of time without failure [11,13). However, in
practice the distribution of inéuts is often not known, so
random testing does not then produce a reliability estimate.
The main problem with random testing is that just doing more
of it may not necessarily increase confidence in the program
by much. A hundred random test cases may test a few
sections of the program a hundred times, rather than testing
a hundred sections of the program. The following small
experiment il&ustrates this point.

The experiment was performed to measure the effects of
program choice, test data selection method, and data set
size on the adequacy of test coverage. The coverage measure
used was the mutation score from the first Fortran mutation
system. The mutation score will be discussed fully in
Chapter II, but for now it is sufficient to know that the
scores range from 0.0 to 100.0, with the higher score

indicating more complete test coverage. Two programs called

N B

-

o et 2 gt e

e r—_—_—

r——

JBSTO03 and JBST0S, first reported in (7], were used in the
experiment. They are both sorting programs so that the same
test data may be used, but they are based on different
algorithms., The test data selection methods are random
(from a table of random digits), and hand selection. All of
the hand-selected data was chosen before any testing was
performed, on the basis of a general knowledge of sorting.
The small test sets were composed of three vectors, of
lengths 1, S5, and 10. The large test sets contained six
arrays, of lengths 1, 2, 5, 6, 8, and 10. Two replicates of

each combination were generated, and the mutation scores

were measured. The results appear in Table 1.

Table 1. Effects of Test Size, Selection Method,
and Program on Test Adequacy

PROGRAM
Mutation Scores Test Set
JBSTO3 JBSTOS
95,6 92,5 small
96.3 92.2
Hand
Selection 96.7 95.2 large
96.7 95.2
96.3 94.9 smalil
96.3 93.8
Random
Selection 96.7 9.7 large
96.7 94.8

The effects are small, since all of the test cases

score in the 90-100 range, but there are strong

T

e e ot

statistically identifiable effects. Table 2 is an analysis
of variance table, with effects asprogram, b=data generation
method, and c=test case size. (See Appendix E for a short

discussion of analysis of variance.)

Table 2. ANOVA Table for
Size-Selection~Program Experiment

Effect Estimate Ss df MS F
a -2.23 19,80 1 19.80 176 *
b -0.50 1.01 1l 1.01 8.98
ab -0'32 h 0.41 1 - 0.41 3.64
c +1,.10 . 4.84 1 4,84 43,02 *
ac +0.55 1.20 1l 1.20 10.67
be +0.71 2.02 1l 2.02 17.96 *
abe +0.53 1.11 1 1.1 9.87
SSE 0.90 8 0.1125
SST 31.29 15

The effects marked with an asterisk are'gignlficant at
the 0.005 level. Thus we see that the program being tested
is a major source of variation. Despite the fact that the
programs perform the same function, one 1is more -easliy
tested tran the other. The size of the test set is also
important, with larger test cases providing better coverage
on a given program. Neither of these conclusions 1is
surprising. Since the b effect is not highly significant,
hand selection and random selection d4id not produce very
different results in this range of sampling. However, the
significance of the bc interaction leads us to believe that
as the size of the test data set increases, hand-selected

test data improves its performance faster than does randomly

Y

G ki SR 3T e

selected test data. Thus random test data may be less
desirable than test data that has been selected according to
some plan that takes into account properties of programs,

Symbolic executiocn. One measure of test data
effectiveness is the number of different control paths that
the test data will cause to be executed. The ATTEST system
described in (8,9] analyzes the structure of a program and
develops symbolic requirements for the traversal of given
patks in the program, As the name "symbolic execution"
suggests, the system steps through the program accumulating
symbolic expressions rather than the usual numerical values.
A branch condition results in a conditional expression
involving algebraic formulas. At the end of a path, then, a
compound logical expression invoiving algebraic expressions
in the 1input variables is obtained. These expressions may
then be solved automatically for input values that will
drive execution down the desired path. Symbolic execution
systems for subsets of LISP (4] and PL1 {18] have been
reported.

Program Instrumentation. As was mentioned in the
preceeding paragraph, coverage of program paths is a measure
of test effectiveness. This measure can be used as a
driving criterion for test data selection, or it can be
evaluated for test data generated by arbitrary processes.

The evaluation of the coverage measure can be implemented by

instrumenting the program; that is, inserting instructions

T s Qe ey

that do not affect the functional behavior, but which use
auxilliary variables to keep ¢track of program behavior,
Instrumentation can be used for paths of arbitrary ii;
complexity, but is most often limited to simple Decision ¢to

Decision Paths (DDP‘'s) [27,15] and "hidden paths" (11] ;‘

within predicates. While many more sophisticated techkniques

- vr——

are being studied, the DDP method is widely available at the :

commercial ievel [2,30]. However, examples of simple errors

! that could escape detection by the DDP procedure hLave been
reported in (14], i, |

Mutation Aralysis. Mutation Analysis produces a -

measure of test data effectiveness that includes simple DDP
coverage but is muchk more comprehensive. Test data that !
receives a high mutation analysis score must not only force

the execution of all program statements, but must also

-

demonstrate to a high degree of confidence the correctness

H i
e s

i '* of the operations along the paths. However mutation
: j analysis systems do not automatically generate test data, [f
; ié But the listing of live mutants is generally very helpful to r L
iR the human tester in devising test cases. A full discussion 3
g ;J is deferred until later sections. ’“_
'
: J Otker Approaches to Software Validation d,
i " Formal Verification. Formal verification has been i?:
ft . *4 proposed in (20] as the ultimate program validation .
| ‘?? technique. In this technique the tester 1is required ¢to g'
. “3 produce a mathematical proof that the program's behavior is }?
N]
R . i

T T T iR
' i

T W 2 .
e ..:;.n,‘:wrgvffrt LY ¢ <
"w-— e e e e R

11

consistent with its functional requirements. Manual theorem
proving for programs is usally such a large process that the
technique depends on the availability of automatic theorem
provers, or at least gsemiautomatic ones that pause
occasionally and ask for advice. Another requirement |is
that the statements in the programming language have their
semantics expressible in simple axioms. The kay
reservations that many researchers FRave about formal

verification are

(1) Can formal vérificatioﬂ be made practical for
large software systems? This depends on
developing very efficient (in both space and time)
theorem provers. W.D. Maurer recently.-reported
in [(21] that verification of a two page Cobol
program was obtained at the cost of S10,000, Mr.

Maurer was speaking in favor of verification.

(2) Can formal verification be made sufficientiy
reliable? At the present "proofs" of programs are
as subject to error just as are the programs
themselves (10,14]. Reliability may be improved

by improving the reliability of automatic tools.

(3) Can production software be formally specifled

as completely as is required for formal

- €

e R~ e
T TIr A At) . ——— . r —_—
’ g - el g - - Z ..

verification. Testing does not usually require a

complete prior specification.

Error Seeding. Error seeding (13] treats the program
as a statistical object. A known number of errors are |

deliberately introduced 1into the program, and testing

e ——

proceeds until a predetermined number of errors have been
discovered. 1If all errors are random and independent, one
% could use the ratio of seeded to nonseeded errors among
those discovered to estimate the total number of errors f
remaining. This is a direct analogy to common wildlife

population estimation techniques. The problem is that

experience shows that errors are not random objects (1], and
their clustering and dependent behkavior may spoil this
anaiysis. 3 l

B e el e g —— " .

-
]
-

-

!
|

LN >~@"' revy w,.‘,‘

<0
i
T -

[>
.j&
-

& S e

13

CHAPTER I1I

CONCEPTS OF MUTATION ANALYSIS

Conditional Correctness
The chief concept underlying mutation analysis 1s that of

conditional correctness.

Given:

a program P,

a class of programs M; Pe&M,

evidence E about the program P.

Conclude:
If a correct program P' is in M then either P
is correct or E demonstrates the incorrectness of

\
{“ P.

This paradigm 1is satisfied, for example, in the case of M

being the set of programs for evaluating polynomials of

? , degree < 5. Then E is the evaiuvation of P on S distinct
points. Given that the desired program is in fact in M, E
is sufficient to decide whether or not P is correct. In

this example, E is sufficient to distinguish any two

elements of M, In the more general case, this need not

i

4) N
STAT N G Sl
9~ g o oo -

—_———

T~

hold. All that is necessary is that E distinguish P from

every element of M that is not equivalent to P. We say that
two programs are equivalent if they have the same
input-output behavior. We say that an element of Ml or M2
is equivalent (or nonequivalent) {f it is equivalent (or,
respectively, not equivalent) to P. This result hkas been
extended to much wider classes of programs, but those
extensions are still based on polynomial behavior [29].

Now consider a slightly more complicated situation.

Given: .
a program P,
two classes of programs Ml and M2; with Pe M1&M2,

evidence E about the program P,

Conclude:

If

(a) there is a correct program P' in M2 and

(b) whenever E distinguishes P from all of

the nonequivalent programs in Ml,that E also
distinguishes P from all of the nonequivalent
programs in M2;

then either P is correct or E demonstrates the

incorrectness of P.

It 1is noted that the second situation is

fr——— ——————n ——— —

oot g

L N

1S5

mathematically isomorphic to the first (Ml is redundant.)
However, we will be interested in the experimental situation
in which propergy (b) does not actually hold completely, but
is rather a statistical description.
Mutagenic Operators

Mutation analysis is an implementation of conditional
correctness where P is a program written in some programming
language and Ml is a set of mutants of P. A mutant of P is
a program derived from P by making a single, simple source

language change in the program. Mutations are produced by

mutagenic operators suchk as:

(in Cobol) Reverse any two adjacent elementary
items in a record.

(in Fortran) Reverse the dimensional limits in a
two~dimensional array.

(in any language) Substitute for a reference to a
variable a reference to any other variable

appearing in the program.

The choice of mutagenic operators 1is 1influenced by three

concerns:

(1) to include most commor. programming errors

[11,32).

(2) to obtain program coverage by including

i S NI Kt VORI o I ., 07 15 AN 0 e AT S S O 5105 M At Bt A FA 03V ST U N e 15k s AT ar 2, AW ar i
P, - . [T e N A TP it i e 1

16 i

special operators that indicate whether or not
statements have been executed, and whether or not
those executions had any effect on the final
result. { !

(3) to permit straightforward and efficient

implementation 1in an interpretive or compiled

system.

P

Evidence E results from executing P and some of its mutants

O n . o mmras erimen®

on a set of test data. The strength of the evidence is to

some degree under the control of the designer of the

mutation system., If the set of mutagenic operators
implemented in a system allows test data to pass mutation

analysis (distinguish P from all of Ml), .and important

errors are not detected, then the set of operators can be

augmented, adding programs to Ml and strerngthing the

[

evidence, by forcing the user to provide stronger test data.
Similarly, if operators are found to be of 1little use in

testing (adding 1little strength to the test evidence), then

/—/ =

those operators may be deleted. Operator selection be

discussed further under the proposed experiments.

-

" The Competent Programmer Assumgtion and
The Coupling Effect

[i For any realistic choice of M2, either assumption (a)

| or (b), or botk, will not be fully satisfied.

ti; For example, let M2 be the set of programs which a
|

B T

LA on BRI Ao BN 03 Bt A ot i it~ o . R
. B i e i R

17

programmer might produce in the course of an effort to
produce a program P which satisfies functional requirements
f. Then, just assuming that the programmer could possibly
write a c;rtect ﬁrogram, assumption (a) will be satisfied.
But assumption (b) is probably not. For any program P and
any finite test set E it 1is possible to find some other
program P' such that P and P' agree on E but nowhkere else.
If bothk P and P' are possible results of the programming
practice, then (b) will fail,

At the other extreme, let M2 = M1, Then assumption
(b) is trivially satisfied, but.(a) is not, since we know by
experience (Appendix D) that even the best programmers
produce programs that contain errors more pervasive than a
single, simple change. Another way to view this is that it
often takes more than a single change to correct a “buggy"
program, (See for example a discussion of a program by Naur
in (14].)

In mutation analysis, we try to balance the two
assumptions and choose an M2 so that neither is dramatically
false. Even so, the definition of M2 1is rather vague.
Generally we choose M2 to be the set of programs that are
"close"”™ to P in a syntactic sense. M2 would contain
multiple mutations, as well as perhaps simple missing path
errors, etc. Assumption (a) is called the competent

programmer assumption [11,111

A competent programmer, after completing the

SR D AR G e bt s o

—-———-

>

iterative process and deeming that his job of
designing, coding, and testing is complete, has
written a program that 1is elther correct or is
almost correct in that it differs from a correct

program in "simple" ways.

Assumption (b) is called the coupling hypothesis [11]:

Test data that 1is sensitive enough to detect all
simple errors is sensitive enough to detect most

likely complex errors as well.

If the competent programmer assumption and the
coupling hypothesis were compietely valid, then mutation
analysis would be a perfect testing technique. Since
elimination of all simple errors would eliminate all
possible erors. This work addresses the coupling
hypothesis, and attempts to place statistical bounds on its
validity.

The following is one possible definition of a general

"coupling effect”.

Let P be a program, Ml a set of programs, and M2
another set of programs. We say that M2 is
coup-ed to M1 (for P) if whenever a set of test
data T distinguishes 4 from ail of the
nonequivalent members of M1, then T also
distinguishes P from all of the nonequivalent

members of M2,

SR SRS

R L e

19

The existance of a coupling effect of this type has been
proved in [6] for decision table programs where Ml = {single
mutations of P} and M2 = {multiple mutations of P}. 1In “the
more usual setiing of Fortran and Cobol programs with Ml =
{single mutations} and M2 = {all likely errors}, then the
strong form of the coupling effect does not exist, since
multiple mutations can escape detection by test data that
are sufficient to detect first order mutations. This
preblem will be addressed specifically in Chapter 1III.

These uncoupled errors, or 1likely programming errors that

are not detected by test data generated for first order
mutation analysis, will be collected from the experiments,
and studied to see if they suggest new mutaggnic operators
to be added to our current set in order to strengthen
mutation analysis.

We can however express the coupling effect

empirically:

Let P be a program, Ml a set of programs, and M2
another set of proagrams, We say that M2 s
coupled to M1 (for P) with coupling coefficient

(l-w) if w is the largest number such that:

for any T distinguishing P from all nonequivalent

elements of M1, the number of elements of M2 that

B

20

are nonequivalent and not distinguished by T s

not greater than wlM21,

Examining all possible test cases is not in general possible
{else there would be no need for any other testing
methodologies), so tkis definicion is operationally
deficient. We can however define another coefficient z to
be the fraction of the nonequivalent members of M2 not
eliminated by some particular test case., 2 is then a random
variable over thke space of program/Ml-sufficient test-case
pairs, whose wupper bound {s ;. An experiment on the
coupling effect is a measurement of the strength of that
effect by measuring 2z, and hence estimating w. Actually, =2
itself would only be estimated by sampling.. A confidence
fnterval (see Appendix E) could be determined for z. The
conclusion of such an experiment could be of the form:

For programs selected from population Q and test

data generated by process R (to a strength

sufficient for first order mutation analysis) the

values of z were estimated by sampling from the

sets M2 generated by process S and were found to

range from x to y.

Thus if Q is similar to a population of programs about
which we want to make quantitative testing statements, and R

is the testing procedure that we want to quantify, and S

LR RS /) T

21

generates a reasonable distribution of cantidate alternative
programs, we can use the estimated values of z to bound the
likelihood that errors remain in a program.

The validity of the mutation analysis technique thus
rests on the competent programmer assumption and the
coupling effect. The major effort in this researck is
toward finding the strength of the coupling effect, and thus
toward finding a 1imit on the reliability af wmutation

analysis.

Equivalence of Mutants
Not all first order mutagts can be eliminated, no
matter what test data is supplied, since some mutant
programs will be functionally identical to the original

program, Some of these equivalent mutants can be detected

automaticalily, witk methods borrowed from code optimization
theory (3,1). For example, changing

A :=0 A = 0

=n=)

B :=0 B := A
is an equivalent mutation that can be detected at compile
time and eliminated (i.e. not generated). Since
equivalence is formally undecidable, we can never hope to
detect all of them this way. Mutation systems wil. continue
to rely on the human user to judge the equivalence of some
mutants. The accuracy of the typical user in judging

equivalence needs measurement, as does the cost of

fimproperly judging a mutant equivalent when in fact it

VSO

o s il s s

~_~
- T

22

represents a potential error.

Most equivalent mutants encountered in testing are
very simple ones, like the example above. Another major
source of simple equivalent mutants is the inclusion in a
program of useless variable initializations. If a program
includes "A:=0", and each possible execution path |has
another assignment to A before A is used, then the "0" in
"A:=0" may be changed to anything else, Or the A may be
changed to any other variable that does not need a nonzero
value at that point. An example of a useless initialization
in a Cobol program used in this étudy is

MOVE SPACES TO PRINT-LINE,

WRITE PRINT-LINE FROM HEADER~LINE AFTER PAGE.

Another source of equivalence 1is assignments that
"almost" don't matter, For example, if in a Cobeol program
FLAG is used as a boolean with 'TRUE' for true and 'FALSE'
for false, and the only test in the program is IF FLAG =
'TRUE'... then an assignment FLAG = 'FALSE' can be changed
to FLAG = 'HELLO', or anything else other than 'TRUE'. .A
statement such as MOVE ZERD TO NUM-1l, where NUM=1 is defined
to have no fractional part (e.g. PIC 99,), can be changed
to MOVE 0.12 TO NUM=-1, due to the Cobol rules for numeric
truncation in a MOVE. Trhe detection of equivalence in other
cases may not be so easy. Changing IF A = 11 to IF A IS NOT

< 11 may not be judged equivalent until analysis of the

program shows that A can never be greater than eleven at

e

— S B B3 = T

N
23
that point. Obviously, examples of arbitrary conploxity may
be constructed.
-
!
}
)
]
K
i
N
. H
; A i
1 ‘5 '
“ |

W

TN I WS 1 A A YR 0 e . .

CHAPTER III

THE COBOL MUTATION SYSTEM

Design and History of Mutation Systems

Automated systems to aid mutation analysis have been
developed [1,5,11,12,19]. Such systems are composed of the

following basic functions.

(1) A parser to reduce the source code to an
internal form suitable for interpretive execution

and mutation.

(2) A mutation generator that produces a 1list of
mutation descriptions applicable to the program,

based on its internal form.

(3) An interpreter that executes the program or a
mutant program on & test case and records the

results of execution.

(4) A test data handler and user {interface to
provide a convenient software test harness. This
allows the user to submit test cases, examine the

results, and elther reject the test case or accept

25

it for further analysis.

(S5) A mutator that modifies the internal form in
such a way as to correspond to a source language
error, and later restores the program to its

internal form.

(6) A report generator that summarizes information
to the users terminal and to a permanent file in
which is stored the status of the mutation
analysis, the mutants reﬁaining, and the test

cases.

The first automated mutation system was FMS.1 (for
Fortran Mutation System -- version 1) deQeloped at Yale
University [11]. FMS.l was developed on a PDP 10 and was
later transported to a PRIME 400 at Georgia Tech, a DEC 20
at Yale University, and a VAX 11 at the University of
California, Berkeley. FMS.l treats only a subset of
Fortran: a single subroutine with integer arithmetic and
without 1/0. Success with this pilot system was sufficient
to motivate the construction of more elaborate systems.

FMS.2 was also developed at Yale and transported to
Georgia Tech. It accepts multiple subprograms in full ANSI

Fortran (minus 1/0) (19,11]. FMS.1 is less of a

user-oriented system than FMS,l, and was designed primarily

o e o

———

A

‘e
PP S —
ST o A . - G~ -

iy

. v .
[2 Y YR '...’-
M 4

to allow the flexible design of mutation experiments.

CMS.1, a mutation system for Cobol, was designed at
Georgia Tech by the author and implemented on the Georgia
Tech PRIME 400. The design owes much to the earlier FMS.1,
as well as to discussions with its designers. For a full
discussion of this system, see appendices A,B, and C.

A Case Study

During the development of CMS.l the author had
difficulty debugging a subroutine called NXTLIV. Since
CMS.1 is written in Fortran, it was decided to test the
subroutine under FMS.1. (Pms:z was not then available at
Georgia Tech.) It was necessary to modify the subroutine
somewhat in order to conform to the FMS.l1 Fortran subset,
but it was felt that the error(s) probably did. not 1iie in
the code that required modification. A condensed script of
the testing session appears as Appendix D, One error was
found quickly. The ease of finding the error is probably
due less to mutation 1itseif than to the convenient
subroutine test harness provided by FMS.1l. A second error
was found later, however, as a direct result of trying to
eliminate one of the last remaining mutants. An interesting
note is that the mutant being considered was not the
correction of the error, but another mutant yét to be
considered was. This is an example of the coupling eftect.
Detection of one potential error automaticaily detected

another,

oo e

—4

o

v

:é—=—~qullir

Ay Rt e e 4

27

Programs Used in This Study

Most of the experiments reported here use data
generated from six Cobol programs obtained from several
sources. Each of the programs was modified slightly to fit
in the CMS.l Cobol subset. One typical modification was the
replacement of a serial disjunction of the form

IP A= 'A' OR 'C' OR 'Q°'
by thke equivalent form
IF A= 'A*ORA = 'C' ORA = 'Q°
Another is the replacement of a condition name by its
defining condition. In some érograms record sizes were
reduced without affecting program 1logic. Listings of the
programs as tested may be found in Appendix F.

Program 1 is from the Army SIDPERS personnel system,
and contains 146 lines of code. 1In its original form there
were otptional sections for different input forms (disk and
tape) and different output dispositions (disk and printer).
These options were deleted to conform to the cMS.1
sequential input -~ sequential output restriction. The
deleted code is essentially a copy of retained code with
different options on the READ and WRITE statements. No
errors were found in this program during the experiments.
Tpe progam has two input files, both containing a key and
information field. The files are presumed sorted on the key

fields, and represent old and new master files. The program

produces a 1og of the differences between its two {input

T

SR

R R Gt ba L L R L PR e

28

files. Program 1 is used to illustrate the use of CMS.1l in
Appendix C.

Program 2 contains 163 lines of code and was written
by a student at Georgia Tech as an exercise. The program
accepts account transactions and performs one of several
simple computations based on a class code {n tkhe input
record, Data validation {is performed, and the output
consists of one record for each input transaction, plus
summary statistics by class.,

Program 3 is adapted from Learning to Program in

Structured Cobel [33]. Input transactions are in the form

of pairs of records. For each pair the first record is a
name=-address~phone-account-number record, and the second
contains credit information. From that credit information
discretionary income is computed by a standard fermula. Tre
purpose of the program a readabie listing of the input fiile
with name and address in one column and decoded credit
information in another. One small error was found; there
was code to handle the situation of an end-of-file after the
first card of a pair, but this code did not bring e;ecution
to a graceful end, Instead, the program terminated
abnormally several statements later when another READ was
attempted., There were also several useless initializations.

Suck useless statements are a nulsance in mutation analysis

since they can be changed to - any other useless statement

without affecting the input-output behavior of the program.

Prommar e

g

— p——

W B S AR < A SR e

29

Program 4 is adapted from ANS Cobol: A Pragmatic

Approack [23) where it is called SRMFREP. The input records
are codings of student academic data, including name,
address, major, status, and a numnber of - course items
consisting of the department, credit, and grade for each
course taken. The program computes the students' grade
point averages and produces a listing with name, address,
and other information in one column, and three c¢olumns of
course reports. The original program was written to accept
very long input records (>1000 characters}. Since CMS.1
alliows a maximum of 150 characters per record, some
abbreviation was necessary. The identifying fields were
shortened, and the maximum number of course reports reduced
to 11, One error was found; code to handle invalid input
records could sometimes refer to undefined data fields.
Program 5 was also written by a student at Georgia
Tech. Input transactions contain identifying codes for a
store, a department, and a salesman. The salesmaﬁ's name,
year-to-date sales, current sales, commission rate, and
months employed are also included. In the computation,
commision bonuses are paid, depending on the department and
the average sales volume, Some data validation is
performed, and error report records are interspersed with
valid transaction report records. One tunctional error was
discerred'during testing. If a page-full condition is

raised by the printing of an error report, then no heading

— X L L PRt o o et S o e gt N -
p r W"‘F"_ *x. e s L A1 w1 ¥t ka4 A Mo . B MG A+ s - -

30

would be generated for the following page. Several data
flow anomolies, such as useless initializations, were

detected.

Program 6 is also taken from Learning to Program in

Structured Cobol (33], and was written as an extension to

Program 3., In addition to computing discretionary income, a
credit limit is computed based on discretionary income,
marital status, home ownership, and job tenure., Rather than
just creating a listing from its input, the program uses the
input as transactions against a master file, The input and
master files are presumed to be.sotted by account number,
and a new master 1is produced. A separate lqg of
transactions and errors is also generated. The transaction
types are add, delete, and change master records. This
program was apparently not tested before publication, since
it did not function properly on any input., Faulty program
logic caused the last transaction card-pair to be ignored.
An empty transaction file caused abnormal termination. The
input is validated in one section of the program, but not in
another similar section. 1f the first card pair is an
invalid transaction, the error message is placed in tkhe log
file before the log file header. Many extra initializations
and data field definitions are present, due largely ¢to the
free use of the COPY verb, The program, after correction,

contains 619 lines,

Test Data Generation

L

.-._v.‘

e [— o [

DU b s ophilanstc g 3

wpem - e s

. e Sme— e

’
e -
[N
——

31

Test data for use in the experiments was generated in
the way in which we would expect such data to be generated
in production use of a mutation system. A tester (in this
case the author) first manually generated tests to cover the
major points of the specification, For example, 1If a
program is supposed to produce one type of record for a zereo
input field and another type if the field is nonzero, the
test data would include both. Actually this initial test
data does not even have to be very good, because of the
feedback supplied by the mutation system. The tester enbles
a subset ¢f the mutants, andistarts a mutation run. The
mutants alive (i.e. not eliminated

not differentiated fron the original program) at the
end of the run suggest new test data that the tester must
generate, This cycle continues wuntil all nonequivalent
mutants have been eliminated. Then a 1larger subset of
mutants is enabled, Testing continues as before until all
nonequivalent mutants are eliminated. The subsets used in
this study are

1) The TRAP mutants. Elimination of these requires
that all statements in the program be executed.

2) A random 10% of all substitution mutants, and all of

the other types. This seems to yield strong test data

with reduced computational effort (l].
3) All mutants that can be generated by :he.sysccm.

(See Appendix A for a list of the mutagenic operators

b0 i Tl 24 S N7 B M A 28 S - DA A 1, N T ATl s s BB LI e om b 0 iy ARV I ot

supported by CMS.1.)

Program Statistics

The results of mutation analysis on the six programs

is summarize in Table 3, which shows for each of the six

X " programs the number of program lines, the number of mutants
} i when the substitution mutants are generated with probability
0.1, the number of those mutants equivalent to the original

program, the total number of mutants that can be generated,

R T

and the number of those that are equivalent.

Table 3. Mutation Statistics on the Six Programs

| | number | number | number | number | number |

| Program | iines | mutants | equiv. | mutants | equiv. |

; ‘ | at 10% *|] at 10% | at 100% ‘ at 100%!|

- - | | |- - ==

] 1 | 146 | 389 | 17 | 1098 | 21 | j
, | 2 | 163 | 603 | 38 | 2814 | 47 |
] 3 I 238 | 1125 | 61 I 5340 I 106 |
',, | 4 | 321 | . 1609 | 58 | 7334 | 95 | i

| S] 455 | 1527 | 92] 7957 | 228 |

| 6] 619 | 4011 | 128 | 28275 | 428 ! .
i B [;
35 * 10% of substitution mutants, 1008 of other types.
| i
;‘ Empirical Complexity of Mutation Analysis {

\ { With the operators now in use in the various mutation
. systems, it has been seen that the number of mutants of a |
{ glven program is approximately proportional to the square of

the length of the program (l]. For Cobol programs perhaps a

better estimator of the number of mutants is the product of '

— - e v

~——

33

the data division length and the procedure division length.
Indeed we can almost predict suchk an empirical 1law from
first principles. Some of the mutant types are inkerently
bounded by linear growth in the program size. Examples
would be arithmetic 6perator substitutions, in which there
are a fixe@ aumber of substitutions to be made for each
occurrence of an operator in the program. The number of
suck source operations is no more than the 1length in
characters of the source program. The dominant mutant
types, for large programs, are the operand substitution
types (1]. The number of thosé is bounded by the number of
data referances in the program times the number of distinct
data items to be referenced., Both of those are bounded by
the length of the program (or for Cobol, by the 1length of
the procedure division and the data division, respectively.)
Figure 1 plots the 1logarithm of the program size in iines
against the logarithm of the number of mutants from Table 3.
Since the points seem to lie about a straight 1line with
slope 1/2, we see that the number of mutants is gquadratic in
program size. The graph also stows the nurber of equivalent
mutants for the programs. We See that the number of
equivalent mutants is also quadratic in program size, This
could be troublesome for larger programs unless most

equivalent mutants can be detected automatically.

———

- ———> o o

S QU

Number

™

DNP D
valent

E)
i

R M, I AEERN e 0 7

Log Graph of Program Size vs.

JRSEVENI,

Log-
of Mutants and Number Equ

muawumz amuoa .

1.

e

™

sjupany JUA[E

vl T K

ATNby »

N i

igure

F

-2~ O N @

RSB E ol 1
JURAUURE I 0 G531 el Wt
168 L 9

01 mo~

ol

(=}
t

,T . . L edmr—l . ~
.nﬂ..“a. T IRE LT e o,

o e— . — v T L g

f

At g g

CHAPTER IV

EXPERIMENTS ON THE COUPLING HYPOTHESIS

Empirical evidence has been found (1] for the coupling
effect for Fortran programs, but this evidence is weak in
that only a very few programs Lave been studied in a limited
way. This research will extend these results by more
extensive studies in an attempt to place bounds on the
statistical validity of the coupling effect.

A series of experiments has been devised to test the
hypothesis that testing a program to a degree sufficient to
eliminate first order mutations is neceésarily also
sufficient to eliminate most 1likely complex mutations as
well., The experiments all have the same basic format:

Step 1: for a given program, generate test data using a
mutation analysis system, sufficient for first order
mutation,

Step 2: Randomly generate a large number of more compiex
mutants, execute the resulting programs on the test data
from step 1, and list mutants not eliminated.

Step 3: Manually examine the 1list to remove equivalent
mutants.

In step 2 1in all cases, we use uniform sampling with

replacement from a given space of complex mutants. Thus the

— e e

parameters of each experiment are the program being tested,
the tester, the type of complex mutants considered, and the
sample size. These experiments were performed using a
single tester (the authkor), and a single set of test data
for each program. The repetition of these experiments by
other investigators would enable us to estimate the
variation in the coupling effect due to test data
generation.

Random Pairs of First Order Mutants

One place to start looking at the coupling effect |is
with "complex errors" defined " as pairs of simple mutants.
It is not reasonable to 1look at all possible pairs of
mutants because of their number. A small sample program

might have on the order of ten thousand mutants, giving a

‘hundred million mutant pairs. (Actualiy the number would be

somewhat less, since not all pairs are possible, but the
order of magnitude is correct.,) It is quite feasible to run
that many mutants, but the number of mutants that must then
be examined by hand for equivalence is unmanagable, We can
obtain sufficient information by selecting a reasonable
number (in this case 50,000) mutant pairs from one program,
and then selecting more from a different program, and so
forth. Sampling programs as well as mutants will make any
conclusions more general. When the coupling effect ls total

(w=1,0), test data developed to eliminate all first order

nonequivalent mutants eliminates all higher-order

[PURINPS SN

37

nonequivalent mutants as well. Since the coupling effect is
not expected to be total in practice, what we need is a
confidence interval on the fraction of second order mutants
that are not equivalent and are not eliminated by data
chtosen to eliminate first order mutants. If we find any
such "bad" second order mutants, we can obtain a two-sided
confidence interval on that fraction (see Appendix E). If
we find none, then we can still obtain a one-sided (upper
bound) confidence interval. This will give us an estimate
of the probability that an error of the type {second orvder
mutation} would escape detecci&n in mutation analysis. For
this experiment pairs of mutants were selected uniformly
from the 1list of first order mutants, by a pseudo-random
nurber gererator. There were gsome technical difficulties,
A mutant is a mutant of a particular program, and may not
have meaning for another. 1In particular, if S and T are
mutations to a program P, producing programs S(P) and T(P),
then T(S(P)) may not necessarily be a legitimate mutant of
S(P). For example, 1f S is "Delete statement 27" and T is
"In statement 27 replace I by J*, then T cannot follow S.
So in the selection procedure such things had to be avoided.
The method was to select a p#it of mutations, check their
validity as a pair, and make the mutation if valid. 1Invalid
pairs were discarded. The process continued untii the

required number of valid pairs had been selected. The

results are summarized in Table 4.

!
!

38

Table 4. 50,000 Random Pairs of Mutants
for Bachk Program

| Program | Pairs Survive | Not Egquiv. | 95% Confidence |
| | 1lst Order | Interval on |
I | Test Data | | (z * 100,000)**|
I | == | |
| 1 | 26 | 0 | 0.0 -~ 7.4 |
| 2 l 12 ! 0 | 0.0 -- 7.4 i
3	22 ! 5	3.2 -= 23.3	
4	10	2	0.5 ~= 14.4
S	45	0	0.0 ~- 7.4
6	13) 0] 0.0 -- 7.4 I		

** 2 is the probability that a randomly selected pair of

simple mutants would generate an uncoupled complex error
for this test data.

The numbers are very favorable for mutation analysis.
Test data generated to be sufficient for first'Otdet mutants
proved to be sufficient for at least 99.976% of all second
order mutants in all cases considered, and 99.,992% in most
cases. These results can be stated in several ways. In the
terminology of Chapter II, the coefficient of coupiing of
the set {first order mutants} to the set {second order
mutants} for a glven program is very close to unity.
Significantly, program size does not seem to be an important
factor in the coefficient. 1In terms of implications for the
design of mutation analysis systems, the addition of second
order mutations gives almost no power not aliready present in

first order mutations, and certainly not enough to justify

their cost.

i

R s

39

However, uncoupled mutants were found in the
experiment, and they may lead to insights into how mutation
. analysis may be strengthened in other dimensions, such as
the choice of first order mutagenic operators. All of the
uncoupled mutants found were pairs of alterations to a
predicate; either changing a comparison operateor and one of
its operands (Type A), or changing both operands of a
comparison operator (Type B). There were four type A
mutants, one of which is

IF(MARITAL-STATUS=WS = 'S')
== .
IF(NAME-L1 < 'S‘)
and three type B mutants, like
IF(SOC-SEC-IN NOT = '9999G99999")

==)

IF{ADDR=-IN=2 NOT = SOC-SEC-~F1l)

If we treat the uncoupled mutation as a potential error (or
correction) to the program, then they represent a form of
coincidental correctness: taking the right path for &he
wrong reason.
Correlated Pairs of First Order Mutants

It has been suggested (1] that completely random arnd
independent sampling is not really a fair test of the
coupling effect. Most single mutants are unstable and are
eliminated rather easily, and so random pairs will be even
more unstable. Perhaps we should look not at independent
pairs, but rather at pairs of errors that have a chance of

producing subtle errors. Those would be pairs of mutations

P —

that "almost cancel®, We can develop the capability of
automatically generating “"correlated" mutant pairs., A
proposed criterion for such pairs is that they either refer
to the same variable or to the same statement. A weaker
restriction would be that they refer to statements that
reference the same variable. Note that all of the uncoupled
errors from the previous experiment fit this criterion. The
procedure for pair selection is to randomly select a pair of
substitution mutants, and check to see if they reference
statements which reference the same data item (either a
variable or a constant). Pa{rs that alter the same
reference in the same statement are not considered, since
they are in effect first order mutations. The procedure {is
repeated untili 10,000 correlated pairs are .generated and
tested for each program. The results are presented in Table
5, where for each program, 10,000 correlated mutant pairs

were created,

‘e

R]

- ——n

——— N>

PR s $K N+ o e

41

Table 5. 10,000 Correlated Pairs of Mutants
for Each Program

Program	Pairs Survive	Not Equiv.	95% Confidence
	1lst Order		Interval on
	Test Data		(z * 100,000)**
== [I -1			
1] 0	0 I 0.0 == 35.9		
2	3	1	0.3 == 55.7
3	69 { 19	114.4 == 296.6	
! 4	3	3	6.1 == 87.6
5 { 1	0 l 0.0 == 35.9		
5	1	0	0.0 == 36.9

** z is again the probability that a randomly selected
complex mutaat of the current type would represent an
uncoupled error for the given test data.

Eighteen of the uncoupled mutants are of Type A, defined in
the previous section. Four are of Type B. The other
uncoupleé mutant is also a pair of wmutations to a
conditional expression, but the two ﬁutations do not affect
the same comparison. The complex mutation is
IF(ACCOUNT~NUM IS NUMERIC AND BILLED-AMOUNT IS NUMERIC
AND...
is crhanged to:
IF(ACCOUNT-NUM IS NOT NUMERIC AND BILLED-AMOUNT IS NUMERIC
OR...

The experience of performing this exéetiment skowed
trat, while the number of correlated mutant pairs increase

as program size grows, the fraction ot ail mutant pairs that

are correlated diminishes. Therefore, the experiment was

fons i

N e tesiasen smeans

.,..-A
= X

extremely time~consuming (in terms of computer time) for
large programs., This effect would be expected to intensify
for higher order mutation, or larger programs. Thus because
of practical constraints, the correlation of mutants cannot
be studied further using the method of this experiment.

Higher Order Mutants

It is also possible to look at triples of mutants, or
even mutants of higher order. We do not need to carry this
too far. The more errors introduced into a program (or from
another point of view, the more changes necessary to make a
faulty program correct) the ﬁote we violate the competent
programmer assumption. But we do need some data on multiple
mutations, just to assure ourseives that nothing drastic
happens as the order of mutation increases. For this
experiment 20,000 complex substitution mutants of eack of
thke orders 2, 3, 4, and 5 were generated for each of the six
programs., We restrict ourselves to substitutions to avoid
the technical difficulties discussed in the random pair
experiment. As was stated in the preceeding section, it is
not feasible to look at high order correlated mutants. The
tuples were checked to make sure that all mutations were
applied to different data references. The following table
shows the number of mutants that passed the first order test

data for each program, and the number that were not

equivalent (uncoupled mutants).

L Tae ...

= L e e v e e

-__Mv.,‘
. At -
N - W oL

Table 6. 20,000 Mutants of Order 2,3,4, and 5
for Each Program

43

w
w
L
N

| Number
| that
2nd Order! Pass Test

N
v
o
w

Mutants |-
| Uncoupled

| (Nonequiv.)

o

}

I

|

)

}

| Errors |
]

)= |
Number |
that |
Pass Test |

3rd Order

o

Uncoupied |
Errors |

|
|
|
Mutants :
|
| (Nonequiv.)|

]

o

Number
that

o
o
o

|
|
4th Order| Pass Test
Mutants |-
| Uncoupled
| Errors

| (Nonequiv.)

o

| Number
] that
Sth Order| Pass Test

o

Mutants |- -
| Uncoupled
| Errors
| (Nonequiv.)

e . ——— YD AL T G GEND SEu P N me iy w— — . D —— — —— ——— N G T D S — . —tm— — ——

|
I
!
I
|
!
!
|
)
!
|
|
1
|
|
!

. — T —— T iy g T s Gr— — ty S — T o, G i T gy T D T e T i it

T . D ey WD G Dy Vs B Tl gy T s T iy W) D gy D fn D s, S VD g W Gp— S
Y s, WD iy P el D sy Vs At S i, T s D Gy T G LD g, T G D ey VD s D s D s O
D Sy G, D W ey D il T iy, S sy e ey T Al TS gy D Wt Y ey, W S D iy S s Sl

- e - o e ey et o — o — i —— — o o — oy " —— . o |

There are no surprises in this data.

mutants are more easily eliminated.

Higher order

The one uncoupled error

is of Type A, The 1implication of this data is that, at

least for the class

potential

are

44

representable as combinations of simple mutations, our
experiments on mutant pairs will serve te provide upper
bound information on the incidence of uncoupled errors,
since higker order mutations are extremely unlikely to be
uncoupled.

One other statistic was generated during this case
study. For each program and each order of mutation, the
average number of statements executed per mutant before the
termination of execution (by normal end or error) was
calculated.

Table 7. Average Statements Executed Before Failure
on Programs with Multiple Order Mutations

: Program } 2nd Order } 3rd Order } 4th Order y Stk Order ‘
| 1 | 30 | 24 ! 21 | 19 |
| 2 | 47 i 27 | 19 | 15 |
| 3 [50 { 38 [31, ! 27 !
| 4 | 124 | a5 | 67 { 59 |
] 5 | 52 | 35 | 27 { 22 |
]) | 132 | 98 | 74 l 60 |

Many software reliabllity estimates are based on the
assumption that the probability of failure in a given time
interval of a program is proportional to the number of
errors in the program [13]. I1f that were true, then the
expected time to failure of the program would be inversely
proportional to thke number of errors present. For if T is

tte tirme to fatlure (say in statements executed), and ¢n is

the probability of failure during the execution of any given
statement, The the expected time to failure is given Dby

)

-1

(Average Statements Executed)

JoEs

aaitlhe.

45

SOPE] Y :‘ii?‘r':"

ittt _"Ah N :

A

Number of Errors

Figure 2. Inverse of Time to Failure
vs. Number of Seeded Errors

e LML sn s

O v Bm o ix we L eees

. .-_~
e F IR
- LIPS g et

= (i=1)
E(T) 12: (1~cn) (cn) (1)
=]

P L

which reduces to

cn

E(T)

Table 7 then represents a simulation study of this

assumption. As the graph in Figure 2 shows, the assumption
is supported quite well, Not only is there apparentliy a
strong linear relationship between 1/Avg(T) and n for each

of the programs, but also for all but one of the programs

the line segments can be extrapolated backwards to show

intercepts near zero. That one program is the smallest and,

presumably, the worst simulation of a large software system.
This data cannot be interpreted as compiete proot of the
assumption on the probability of program fialure, hLowever,
since the assumption is based on typical "live"™ input data.
The test cases that generated the data were intentionally
chosen to be nontypical, in that the test cases were
required to execute exception-handling c¢ode that would
rarely be executed in practice.
Coupling and Complexity

It is possible that some attributes of prograns
measurable by objective means would have some influence on
the strength of coupling. One suchk attribute to be studied

is the structural complexity of programs (measured for

A — - e iow e s

47

example by the number of branches). One problem with
another testing strateqgy, DD path coverage, is that it may
take test data forcing the program down a particular complex
patk in the program to force the discovery of an error, For
'example consider the following small program to sort the
tuple (A,B,C).
Ll: 1f A<B then goto L2;
T:=A;A:=B;B:=C;
L2: if B<C then goto L3;
T:=A;A:=C;C:aT;
L3: if BKC then goto L4;

T:=B;B:=C;C:=T;
L4: stop

The program {s incorrect. Tge condition at L2 should be
A<C. Tre input tuples (1,2,3) and (3,2,1) for A,B,and C
both give correct results, and force the execution of all
pbP's. (1,2,3) takes the TRUE branches at L1, L2, and L3,
whilie (3,2,1) takes the FALSE branches. It is when trying
to deveiop a test case that will cause the execution of the
complex path having different results at the last two tests
(TRUE at L2 and FALSE at L1, or vice versa), that the error
must be discovered. So simply covering all simple path
segments may not be sufficient, It {is possible that
mutation analysis has this same weakness, since mutations
are of a highly 1gcalized nature. Any weakness would be to
a lesser degree, however, since mutation analysis includes
DD path coverage as a subcase. To test the relationship of

complexity to coupling, we hypothesize that the nmore

branches a program has, the harder it is to test adequately

S Mt w

by mutation analysis. If this is true, the more
Structurally complex the program, the higher the proportion
of uncoupled potential errors we would expect. An
experiment to test this hypothesis would match programs for
length and number of mutants, but of differing branch-count,
and would measure the coupling coefficient defined in
Chapter II. If the confidence intervals on the estimates of
the coefficients overlap, then we detect no relationshkip.
If they do not, then we have a statistical relationship. 1If
the relationship 1s found to hold, it would be an argument
for simplicity in program structure for programs to be
tested by mutation analysis. Currently mutation analysis
does not suggest that simplicity is a virtue. For this
experiment, "live®™ data c¢ould not be used. Instead, a
sequence of small prsgrams was written, all using the same
data items and data references, but with an increasing
number of branches. The Experiment used 50,000 pairs of
mutants for eack program. Table 8 shtows tte number of
branches, test case records, mutants, pairs passing the test

data, and uncoupled mutants (mutants that pass but are not

equivalent) for each program.

P~y

49
Table 8. Comlexity and Coupling

| Program | Number | Number | Number | Number [Number |
I | of | of | of | trhat | Uncoup-|
| | Branches | Records | Mutantsl| Pass | led |
|- = | = (- (= I
| c-1 | 0 | 1 i 474 | 329 | 0 |
! Cc=-2 | 1 ! 3 | 480 | 153 | 1 |
| C=-3 | 3 | 7 | 492 | 84 | 1 {
| C-4 | S | 12 | 504 | S0 | 3 |
| C=5 | 7 | 15 | 516 | 18 | 9 |

Eleven of the surviving nonequivalent mutants are of
Type A, and the other three are of Type B. The large
aumbers of equivalent mutants in the simple programs are due
to "almost useless® statements that were included as places
to insert branches without greatly affecting the number of
mutants generated.

The effect of adding complexity is vety. slight, and
can be totally accounted for by the type of uncoupled
mutants seen in earlier experiments. Hence complexity, at
least in terms of branching, is not a hinderence to mutation
analysis. Of course these conclusions apply to a very
restricted definition of "complexity". When mutation
analysis systems become availible for a structured language
like Pascal, it will be possible to measure testability and
coupling in terms of other structural factors. In
particular a comparison of an algorithe coded using GOTO

with a comparable algorithm using the more soclally

acceptable constructs would be interesting.

B e L T .

¢ *100,000

10 - ..rVA: _-T —:-._. PR) p—
i : - B DT e r__-._..f_.._-., -
5 —— —f—
E; b g -.‘-:} 'L o

Number of Branches

Figure 3. 95% Confidence Intervals on z* 100,000
vs. Number of Branches

Kt e

et ——

CHAPTER V

_EQUIVALENCE OF MUTANTS

Human Evaiuation of Bguivalence
It was stated in Chapter III that it would be possibie

to detect some equivalent mutants automatically, but not all
of them, For that reason we need a mesaure of how
accurately hurans judge equivglence. An experiment was
designed to obtain suck a measure under circumstances
similar to those under which equivalence judgements would be
made in actual testing. Programsg 3,4,5,and 5 wetre used.
For each program the sequence of test cases discussed irn
Chapter III was used to eliminate mutants, but testing was
stopped when the nurber of mutants remaining was
approximately twice the number of equivalent mutants. This
process eliminated most of the obviously inequivaient
mutants. It has been our experience with mutation systems
that users rarely examine mutants closely with a view toward
detecting equivalences until the set of mutants has been so
reduced by testing. From the remaining mutants, tor each
program a subset of fifty was selected randomly using a
pseudo=-random number generator, Two subjects were used in

the experiment. 8otk have been involved in the developrent

T Ry

52

of mutation analysis systems, and are competent programmers.
Neither had previously been exposed significantly to the
programs used in the experiment. Eack subject was given the
list of mutants and the source 1listing for eack of the
programs, and was instructed to mark each mutant
"equivalent®™ or "not equivalent®. There was no time 1limit.
The reference answers were prepared by the author in
consultation with others.

There are two types of errors that can be made 1in
judging equivalence. The first type is the marking of a
non~equivalent mutant as equivalent, and the second 1is the
opposite: marking an equivalent mutant as non-equivalent.
The second type is not too serious in the process of
mutation analysis, since the mutant remains in the system
and may be reconsidered later. The first type is the major
problem. When a type 1 error occurs, a non-equivalent
rutant whichk presumably could be valuable in the testing
process, and which may directly indicate the presence of an
error, 1is removed prematurely from consideration.
Committing a type 1 error increases the likelihood that an
erroneous program will be accepted as correct by a
practicioner of mutation anlysis, The result of the
experiment is shown in Table 9. For each of the four
proqram;, the table shows the number of equivalent and

non-equivalent mutants 1in the sample of fifty mutatns

present late in the testing procedure, and the number of

———rt

—— b

53

correct identifications, type 1 errors, and type 2 errors

for the two subjects.

Table 9. Human Evaluation of Equivalence

| | ! Subject 1 | Subject 2
Programl$# Eq.l# Not! . ~= | . '

{ |
| |
! | | ICorrect|TypelTypel Correct|TypelTypel
| ! ! | I 11 2] Il 11 21
1= | |- | |- i | Rtaiad Rdatetd
] 3 I 201 301 44 | o1 6 | 42 | 21 61
] 4] 21 1 29 | 36 | 2| 12 | 33 | 6 1 11 |
| 5 1 201 30| 46 | 0| 4 | 40 | s s |
| 5 I 131 371 33 1161 11| 45 | 11 4 1|

Subject 1 was more variable In accuracy than Subject
2, but overall their results were very similar. Subject 1
fdentified 79.5% of the mutants correctly. Subject 2 was
correct or. 30% of the mutants. In measuring type 1 errors,
the best computation is probably the total type 1 errors as
a percentage of total non-equivalent mutants, since the
non~equivalent mutants represent the potential type 1
errors. Subject 1 made type 1 errors on 14.3% of the
non-equivalent mutants, and Subject 2 on 1l1,1%. Similarly,
Subject 1 made type 2 errors on 31.5% of the equivalent
mutants, and Subject 2 on 35.1% of them.

The measure of type 1 errors may be high enough to
reduce confidence in mutation analysis, if it acurately
predicted the frequency of such errors 1in practice. It
should be remembered, however, that the subjects were

required to choose one mark or the other for each mutant

T

e reaemd

with the evidence in hand (the source listing), while a
tester in practice may postpone the decision pending further
thought and testing. Further, the subjects worked in
isolation, and weré thus denied both helpful consultation
and the motivation of accountability for potential errors.
These would be important factors 'in real-life testing
situations. On the othker hand, the kigher error rates for
type 2 erors indicate that the subjects were being

conservative in thelr judgements, rarking mutants

non-equivalent when in doubt.

Pairs of Equivalent Mutants

It might be instructive to look at pairs of mutants
that are equivalent as first order mutants. These might be
a source of weakness in the mutation approack. The reason
is this, An equivalent mutant is a potential error about
which the tester is saying "I don't want to bother with
this; it 1isn't important.” As single mutants, that may be
true, but a pair of equivalent mutants may represent a pair
of arbitrary choices made by the programmer, which may not
interact properly. From anotker point of view, if
muatations are considered not as errors but as corrections
to a buggy program, it may be that the program needs two

corrections, neither of which improves the program by

ftselt,

[e
[

[yrov
[SRS,

[eE— [
L) et

———
| —

= o=

SS

Consider the program fragment
P Asl
B=l

IF A.NE.O .AND. B.EQ.1 ...
Mutant programs Pl with A=l changed to A=2 and P2 with B=l
ckanged to B=A might each be equivalent té P, but P12 with
bothk changes might not. If P12 is actually the correct
program, then it might be possible for P to pass first order
mutation analysis, even though it |is incorrec;. An
experiment aimed at investigating this phenomenon was
conducted. For each program, all possible pairs of mutants
marked equivalent in the testing process were created and
run on the test data. The numbers that were killed were
determined. These nurbers represent a lower 'Sound on the
number of pairs not equivalent to the original program,
since the test data is not perfect, For programs 5 and §,

the pairs were randorly sampled due to their great number

and to the long run time of the program.

S o St 5ok 3 L DA H A . 3N L 7 WA e W AT 5008 LT, Wi A v D AR TRl L0 2 s 025 A 0 - G R i et e . PR -3

e e e ememe e e e g [EIPRI C i e sra———e e w

Table 10. Palirs of Equivalent Mutants

|Program | Number | Number of | Number | Percent |

| | Equivalent | Pairs | Killed | Killed |

} % ‘ Considered ‘ by Data } }
: | 1 | 21 | 208 | 0 | 0.00 |
2 | 47 ! 1081 | 4 | 0.37 | !
§ I 3 ! 106 I 5113 | 36 I 0.70 |
/- | 4 | 95 | 4283 | 6 | 0.14 |
; ' | S] 228 | S000* | 6] 0.12%* | |
2 ! | 6 | 425 | 5000* | 27 | 0.54%*%+%| :

* random sample :
f ** 95% confidence interval = [0.04 , 0.25)
! *** 953 confidence interval = "(0.37 , 0.78)

The results show that less than 1% of the pairs of

equivalent mutants are determined to be nonequivalent (as

pairs) by this test data. These measurements are lower

bounds, since stronger test data might distinguish more 54
pairs from the original program. However, the uniformity of
4 the results would tend to raise our confidence that pairs of

first order equivalient mutants will not be a major problem

for mutation analysis systens,

- =] ™™

td
S - -

LY
e n&v&—-‘.‘;‘ .. 5

b n
~

s Se——

CHAPTER VI

SUBSETS OF MUTANTS

Rardom Selection of Mutants

The quadratic growth in the nurber of mutants of a
program is due to the mutant operators of the substitution
type., It has been suggested that those operators are

actually too stronqg, and that a fixed small number of

substitutions per reference may produce aimost the same
error-detection power. The reasoning 1{is that the tester
"explains® with a test case why the variable X was used, for
example, not why Y was not used {l]. Hence random selection
) of mutants, at least éf the substitution types, may be a way
to bring the growth of the number of mutants down to the
linear range while sacrificing very iittle power. Table 10

surmarizes the results of this study. The colurns 1labeled

"survive” indicate the counts of the number of mutants out

, of the full 100% that survive the specified testing

criterion and are not equivalent to the original program.

—. ™

58
Table 11, Reduced Power Mutation Analysis
| Program | # Mutants | # Mutants | Survive | Survive |
: : at 10% } at 1008 | “TRAP" ; 10% data :
| -

! 1 i 389 | 1098 | 6 ! 0 I
| 2 | 503 | 2814 | 906 | 0 |
| 3 { 1125 | 6340] 129 | 2 |
| 4 | 1609 | 7334] 97 | 16]
| 5 | 1527 | 7957 | 407 | 14 |
| 5 1 4011 | 28275 | 789 ! 66 !

It can be seen that simply generating test data to
cover all statements in the program (TRAP) is not very
strong, but generating data to eliminate 10% of the mutants
is almost as goed as using 100% of the mutants. However,
the trend as program size increases is not quite what had
been expected. As program size increases, 10% mutant
selection generates an increasing number of mutations per
data reference, and should (intuitiveiy) produce a stronger
test. But the strength of the test, measured by the
percentage of all rutants eiiminated, does not increase with
program size, and may actually be decreasing. We may again
consider these findings in terms of implications for the
design of . future mutation analysis systems. Experiments on
the coupling effect have already shown that extending
mutation from first order to second adds very little testing
power. Now it 1{s seen that weakening tirst order mutation

to a subset of itself may decrease the power of the system.

T™his would indicate that ¢first order mutation is not too

et B et

I

. T e,
pha 2 e A

K

strong, but is rather the appropriate level of testing for a

mutation analysis system.

Table 12, Test Strength Using 10% of Mutants

Program | lines | Percent Eliminated

| |
i |
| 1 I 146 | 100% |
| 2 | 183 | 100% |
] 3 | 238 | 99,97% |
| 4 I 321 | 99,78% |
| 5 | 445 | 99,.82% i
] 6 | 619 | 99,77% |

The test strengths are all very good but studies of
this effect with wmuch larger programs are needed to see if
our intuitions really are valid.

Efficiency of Mutagenic Operators

A second economy can be gained if it is tfound that
some of the mutant operators provide only error detection
capabilities already covered by other mutant operators. In
particular, in Cobel, 1f we do not need the data structure
mutants, then we can perform mutations on a machine language
internal form (compiied), rather than a higher-level form
that must be interpreted.

For a mutatgenic operator (or mutant type) to be
useful, it must force the user in some way to produce
stronger test data than he would without it., If all of the

mutations produced by an operator are extremely unstable

(are eliminated by any test data that executes the atfected

60

code), or if all are equivalent, then the operator is not
providing useful information and guidance to the tester.
Let Nt be the total number of mutants generated by a
particular operator, and let Nu be the number that are

eliminated on the first execution of the affected code by a

test data set, and let Ne be the number -equivalent ¢to the
original program. Then a measure of the efficiency of the ;
mutagenic operator (for that program and. that segquence of

test data generation) is given by

(Nt = (Nu + Ne)) / Nt

Nt and Ne depend only on the program being considered and
the operators in use. Nu depends also on the test data

jJeneration procedure. It might ber preferable to think of

the inefficiency

(Nu + Ne) / Nt

A reasonable procedure for collecting operator efficiency [i

i data would be

R
I‘
oo (1) Select several programs representative of the j;
! !# application space envisioned for testing with a
”! particular mutation system. j
gy

(2) Generate test data just strong enough to

.. ¢ e e e et e VU
-7 PR R LT A I
Wl s

— s £

execute all statements. (iL.e. try to produce

weak tests, which cover statements but do as
little more as possible.)

(3) Generate test data to eliminate all

nonequivalent mutants.

After such measurements have been made on several
progrars, and preferably even for multiple independent test
data generations for each proqtam, a set of efticiency
measurements for each mutagenic operator will be obtained.
If an operator consistently scores near zero, then the
delction of that operator from the mutation system would be
justified. If an operator has a significant efficiency
score on any program for any test data generation, then that
operator is forcing the tester toward qgreater test data
strength and should be retained.

There are two limitations to this approach. The first

is that it does not consider interactions between operators.

It may be that two operators each hrave high etfficliencles,
but actually have the same effect, i.e. they require the
same test data for coverage., In that case one or the other
may be necessary, but not both. The efficliency measures
will not give us any indication of this. 1In fact they are
giving us just the interactiorn of the TRAP operator with all

of the others, on the assumption that we will always want at

Sy A o ab B eac

v e e e ———

least statement coverage. We could expand the experiment to

indicate mutagenic operator dependence on any subset of

operators S by replacing step 2 in the procedure with

(2) Generate test data just strong enougk to
eliminate all of the nonequivalent mutants

generated by operators in S,

and by modifying the definition of Nu similarly. Ideally,
we would measure the efficiencies of operators relative to
all possible subsets, in order to find the minimur subset
relative to which 'no other operators had significant
efficiency. Unfortunately, this 1is not feasible, An
approximate operator selection procedure would be to choose
the most efficient operator (relative to trap), and call it
0l. Next choose the most efficient operator relative to
TRAP and 01, and call it 92, and so on. The procedure would
terminate when no operator had an efficiency above a
practical threshhold.

A second limitation is that the procedure works only
for a given c¢lass of programs from which we are sampling.
Drasticaily changing lanquage or even the style in which the
programs are written would probably affect the choice of
efficient mutagenic operators, However if we have a
particular population of programs on whick we will expend

large testing effort, it is possible to "fine tune" the set

P n ey
b

0 = =3/

3

DAL s e

C ST AR AL oz

A .

63

only

of operators for that population of programs, by using

the operators that provide useful testing information.

generation for

data

The results for the single test

the six programs are displayed in Table 12.

Mutagenic Operator Efficiencies

Table 13.

it e 8

llllllllllllllllllllllllll [o4 [} Fs] fy)
[4 o c [
N O00AMOOOOODO OO~ INNo<TaTMO W L) ® o
—t 000000000 OCO0OMOOO0COOO0OO o L] | 9
[V} St o ¢ ¢ 4 ¢ 9 o6 ¢ ol o o ® o 2 0 % o ® o @ » ® o
o [~HoReoNoNoNoleNole) [eNoNeNoloNoNoNaNoNoN-) . [o L -
g 0 n € w
t o @ A -
llllllllllllllllllllll ' & L o)
o []
™ OO0« [o N eXo] NOoOONTgTOWNMON 0 L] o] @
™ (o~ NoNe] [W) ~] COO0OMmMONO~OON ™ od [¥) £ "]
wn Ol o & 6 ok & o o o v o 8 ® o ¢ 0 o * o a v 8 & 3
o CoOoO0O0O 0o (oY oNoNaleNoNoRoNoeNol.) [+ »
0n o o]
[] -t -t [+ o €
lllllllllllllllllll L2 [7] od Fy) <
[y} ot [V]
~OOOQOHONWO VY OO Mt d i MO - o
NOOOOOOOOOOOO 00 ~0O00O0C0 ¥ LY @ [o)
< ® 0 6 0 8 4 0 6 06 4 0 U M o 0 o v s o o o 0O ® £ I3
e (~NoRoNoNaN NN NN 2oy (o NoNoNoN-NoNoN.) wl 8 T O
o © [+
M o e e e T e, e T s P s e e T — T — s T s @ ol [} ™ [}
o o & ~ m
o] [=] ~Or~0 (=N =X NnooOoOooOMOMOoOTw [] 4
4 ™ 0000 ooo NONOOOOO O~ | Y] [+]
[« VI P, Ol o ¢ o ot o o e E B © o o 4 e ¢ 0 e 0 o& Q O O -~
o CO0O0CO (o NN «] [~ NoNeNoloN-YaoNoNolol [+ ot 3 &
_ (] o L o] [%] .
[+, L} [/]
lllllllllllllllllllllll -t Q. [
[3 b > []
O O0ww OO0 VO TOATNNVOHO 2 O -
a cooom O o ~an ONMMNMN -3 > & 0 o
o~ e o 5 o ef o ¢ ek o o J| o s s s 6 o o o4& o “ £ 0
[=] (e NoRoNal [o NN [N =] [X oNoNoNoNoRoNe] < L.} |
[] @ Q. Q.
L - O
lllllllllllllllllllll 5 - -
o 2 w o cC
oono [e N~ X=Na] [nEal X~ [=X -] -t | 7] [
Q000 [eN oY =Ne] [N NN (o N -] .l D [d
~ | 8B & ¢ ¢ ¢ ot o 0 s e E B ESE ¢ 0 0 0 o, o o o N L o B
COoO0O0 0OO0O0O0 0O0O0OO0O o0 0 [] [t
L] 0N 174 4
8 - m o 0
llllllllllllllllllllllll c [7]
o [a o
| N> . > & o |] o
[+ -~ - @ w0 [& m n =] Q@ [| > (3]
& oMLK ONY D> & 3 €& £ 0 [+ [<
© ELb s LOf| O £3¢c0_ 0 o F € ~= o
S A IO E ORI O Y- Me (2] [& | o]
[] VLAV~ | O M E N ID>DODNOLUNOD -t] - L @
o) ecniteoe?t%roaooo???? -t o 0 W
o] _DOIFIDGPIS ACPRMLSCCSCF. . m ﬂ .t
- .
|||||||||||||||||||||||||| 1 a o L o) K
o b
Al
.t
e e P ammm pet - N 0 S IR n . S Y - gy~ C R

o - — a T »\l!..!lllt%l“.‘“ ;
L e .
‘ ‘—.l\‘ . . .

e

= -~ o ¢

T ey
*-4.’
—— i

language constructs to perform different tasks. A mutaqenlc

operator that focuses attention on one type of construct |is
most useful in programs that rely heavily on that construct.

The first five operators are of special 1interest.
These data mutations force us into interpretive execution
using a run-time symbol table, If they can somehow be
avoided, then more efficient compiled execution is possible.
The first operator moves the implied decimal point in a
numeric item. It is useful primarily in that it forces the
tester to provide nonzero values for that variable. The
same effect could be achieved by a special mutagenic
operator that requires a nonzero value at a data reference
in the precedure. FMS.2 provides suck an operator called
ZPUSH., The second operator alters the OCCURS count in a
table description. More investigation of programs using
tables is necessary before this operator can safely be
deleted, using programs that rely more heavily on table
structures. Inserting an extra filler 1Iin a record is of
little use, as is altering the size of a filler. Reversing
two adjacent elementary items within a record is sometimes a
useful operation, but probably the same effect is produced
by substituting one fleld for arother in the procedure
division. A study of the efficiency of 4item reversal
relative to scalar substitution would be useful,

Of the procedural mutations, changing a GO TO to a

PERFORM or vice versa usually provides no testing power.

| ' Perhaps most of the testing effect of trying various path
alternatives is already achieved by simple statement
coverage. Inserting a STOP statement is not helpful because

in most programs, files will be left open, an error. STOP

insertion thus plays essentially the same role as TRAP.
THRU clause alteration, reparenthisization of arithmetic
4 expregsions. and the reversal of the direction of a binary
j MOVE, and changing an I/0 reference from one file to another
are rarely useful., Probably these mrutations too drastic.

i Errors this large are must be detected by any test data that

exercises all of the program. The errors we are looking for
after completing basic statement coverage are subtle ones.
The major errors Lave already been ruled out.

A useful but efficient subset of operators for a

compiler~-based mutation system might therefore be "Delete"

w A

(statement deletion), “"IF rev" (IF=-THEN-ELSE clause
reversal), and the substitution operators “Arith" (for

arithmetic operator substitution) throughk ©"C Adjust®™ (for

!
! constant adjustment) in Table 12.

.t e p—

- ———

56

CHAPTER VII
CONCLUSTIONS AND SUGGESTIONS FOR FURTHER STUDY

The results of the experiments reported here basically
support mutétion analysis as a testing discipline. The
experiments on the coupling hypothesis show that test data
strong enough to eliminate simple errors is strong enough to
eliminate at least 99.977% of random pairs of errors, and
99,793 of correlated pairs. The failings of the coupling
effect for higker order errors were too siight to be
observed. Program complexity does not seem to create
problems for mutation analysis. In all, 1,090,000 complex
mutants were considered, and only 45 of them. were
aonequivalent changes not eliminated by the first order test
data. All of the observed fallures of the coupling effect
were alterations of 1logical tests, and all but one were
either alterations of a comparison operator and one of its
operands, or alterations of both operands. We could make a
new mutagenic operator: “change a comparison operator and
one of 1its operands®, since this would still be only
quadratic in program size. cail it cCol. The potential
operator CO2: "change both operands of a comparison”, is

not as attractive, since it would be cubic in program size,

However, it {s possible that C02 is coupled to CN1., If an

(I g g

experiment of the efficiency of CO2 relative to COl (after

the fashion of Chapter VI) should support this, then adding
one more quadratic operator would correct almost all of thke
weaknesses of the coupling effect that have been observed in
this study.

Less conclusive are the results of the study of thke
kuman evaluation of equivalence. It was found that during
the necessary step of human judgement of mutant equivalence,
errors which weaken the reliability of mutation anlysis may
be made with significant frequency. At least until more
sensitive studies can be made in a true program testing
setting, practicioners of mutation analysis shkould be
cautioned to be very conservative in their marking of
equivalence.

Our observation on the efficiencles of the various
mutagenic operators indicate that mutation does not
inherently limit us to inefficient execution during testing.
The operators requiring a run-time symbol table elither are
not useful or can be simulated by other operators. The
operations that were new for this mutation anaiysis systenr,
affecting input and output, provided no difficulties, at
least for the case of read-only and write~-only sequential
files. Future systems and studies must address more
flexible input/output access methods.

In short, the concept of matation analysis has been

successfully transferred from Fortran to Cobol, and

experiments performed with the Cobol system provide strong

justification for confidence that a program tested with

mutation analysis will perform reliably.

PPN

| .
69 *
APPENDIX A
§ | CMS.1 USERS GUIDE
s § Allen Acree
1 \ July 1, 1979
i
; Document CMS_l.1
:‘t ‘
‘ \
N
l
d o
L
(!
i “l “

INTRODUCTION

The Cobol Mutation System (CMS.l1l) has been developed at the

P

Georgia Institute of Technology by Allen Acree, Rich

DeMillo, Jeanne Hanks, and Fred Sayward. It is based in

-~

part on the PIlot Mutation System (PIMS, 1later renamed

FMS.1) for Fortran designed at Yale University, and ;

implemented at Yale University, Georgia Institute of

Technology, and the University of California, Berkely,

Program mutation is a method for program testing. The

underiying assumption is that programmers produce programs

that are, in some sense, nearly correct. The goal of the

mutation system is to aid in the selection of good test data

by taking advantage of this fact. A mutation of a program P

1s a program P' that differs from P in only a single minor

'* crange, such as substituting one variable for another in an t:

} assignment or changing a + to a - in an arithretic ix

expression., Usually the number of simple mutants of P grows

quadraticalily witk the size of P, Naturally, some of these {]

* f,:}
l,"-

‘j rutations will produce mutant programs that are functionally ?>
'

equivalent to the original, but for the others we should be

able to find test data that will distinguish between the I

}0
'J original progaram and the mutant.
}
{
Y

and to automatically produce mutants of it according to a

CMS.1 13 designed to take as input a fixed program P, @I

o e rwm

71

‘set of mutagenic operators. The system will then accept
t?sc cases from the user, run the original program and all
its mutants on it, and tell the user how many mutants have
been “"killed™. (A mutant is killed when it fails by program
fault or produces a different output than the original
program,) The aim, of course, is to kill all the wmutants,
or at least to kill enough so that the user is reasonably
certain that those remaining are functionally equivalent to
the original program and could never be killed. At this
point the user has a set of test data that is sufficiently
powerful to distinguish between £he original program and all
its simple (nonequivalent) mutants. According to the
coupling hypothesis this test data will also be sufficiently
powerful to distinguish between the original - program and
mest other programs “close® to it, (including multipie
mutations.) This hypothesis has been proved for certain
classes of programs and for certain definitions of “"close",
and thkeoretical work continues in this area, Recent
experiments withk higkher order mutants of Fortran and Cobol
programs also support this hypothesis.

Thus the user can, with the aid of CMS.1, produce test
data that will distinguish between the program used as input
and any program "close" to it. Since we assume that the
program used as input 1s c¢logse to a correct program, the
test data will be sufficient to distinguish between the

input program and the correct program, {f they are not

|

P

equivalent. So the test data will be sufficient to

demonstrate program correctness, to a tighk degree of

certainty.

IMPLEMENTATION

The user of CMS,1 provides the name of the file
containing the source program. This program should be in
the subset of the Cobol 1language specified 1later. CMS.]
parses this source program {nto an internai form suitable
for interpretive execution, Tﬁis internal form 1is also
suitable for “"decompilation®, and the user can be provided
with a decompiled version of any statement. This decompiled
statement may not be textually identical to ‘the original
source, but it shouid be equivalent.

Trhe system then produces a file of all mutations of
the original program. These are stored, not as complete
programs, but rather as short descriptions of how a mutant
is to be created. The user is then asked to provide a file
or flles of test data for his program. These files may be
created outside CMS,1 wusing the editor, or they may be
created "on the fly” ia CMS.l, with editing capability being
restricted to backspace and line delete. However the user
choses to provide the input filles, CMS.l interpretively
executes the original program on this test data, saving the

output. The wuser may examine the output and decide whether

,..‘.<
———— s

-—— e .

73

or not to accept it. If he does, then the test data is run
against all enabled nrutants, and the results of each are
compared to the results of the source. A mutant producing a
different result is marked "killed”. The wuser s then
presented with a statistical summary. If he wishes, he may
also examine more detailed information about the mutants
still living. He may also review the test cases accepted so
far. Then the cycle repeats until either an error is
uncovered in the original progrém, or the user is satisfied
that all remaining mutants are equivalent to the originai.
A CMS.1 run may be interrupted and continued later, with the
syster saving all information necessary for the resumption
of the run.

In response to the experience of trying to transfer
FMS.1 from one environment to another, we have declded to
try to do as nmuchk as possible to isolate rachkine
dependencies. At the risk of possible inefficiencies, we
will concentrate references to file access tectaiques,
character storage, word 1length, and suchk machine~ and
operating system-dependent features in a few small routines.
For example, FMS.l contained 72 random access calls 1in the
DEC Fortran dialect. Each of these had to be rewritten as a
PRIMOS call during the transfer procedure. In CMS.l, all
random access is through the routines REARAN and WRTRAN,
Those two (small) routines are all that need to be moditied

to interface CMS.l1 with a different operating system, For

0o AR A i TR e NS L S I 15 m BN 4= VARG NGRS 8- emiar LAl - Scbiben ot VAP s L vicrs o T e

[RPRRET g

efficlency, some machine dependency 1s tolerated 1in the
interpretive execution phase of CMS.1l, since this is the
most time-consuming phase of the mutation process. However,
this dependency is kept to a minimum even here. The buffers

used in interpretively executing programs are integer arrays

of one or two dimensions, The sizes of the arrays are
parameters. We assume in designing these arrays that a
single integer consists of at least 16 bits, (i.e.
integers are restricted, wherever possible, to a range of

+/=- 32783.)

NOTES ON THE COBOL PILOT MUTATION SYSTEM

We limit ourselves to a simple subset of the language.

We limit ourselves to ten sequential 1input files and

ten nonrewindable sequential output files. This should
be sufficient for such common applications as making
sorted transactions against a sorted master file and
producing a transaction report and an updated master

file. There is a 1limit to the amount of storage

allocated for each input file and each output tile for
each test case. The files are "packed" into arrays by
replacing each string ot repetitions of a single
character (such as a string of blanks) by a single

character and a repeat count. This implies thot the,

75

! user can submit larger test cases (more records) 1if he
can arrange to use such strings whenever possible.

3. Rather than providing for a “predicate subroutine" as

in FMS.1 we simply check mutant output against original
§ " program output to determine whether they have 'produced
3 : _ identical output files. Mutants can also be eliminated
! ; by run-time faults such as attempting to read an
unopened file, data fault, etc. To avoid the 1infinite
loops that sore mutations are bound to create, a mutant
is eliminated {f it executes more than a certain

maximur number vf statements. Currently this maximum

is set to three times the number of statements executed

by tke original program on the test case.

4. Mutations to be performed:
1 DECIMAL ALTERATION - Move implied decimal ({n
| nureric ltems one place to the left or right, I{f
5 possible.
2 REVERSE TWO-LEVEL TABLE DIMENSIONS
Mo 3 OCCURS CLAUSE ALTERATION - Add or subtract one

from an OCCURS clause.
INSERT FILLER =~ of length one between two items in

a record.

[
oH

5 FILLER SIZE ALTERATION - Add or subtract one from

f : ’
-t i | length.
: 6 ELEMENTARY ITEM REVERSAL

I 7 PILE REFERENCE ALTERATION

—— ——— .
-

€ g
| U, - S S

“ .,N -
) %

10
11
12
13
14
15
16
17

18

19

20
21

22
23
24
25

STATEMENT DELETION -~ Replace by null operation.
GO TO ==> PERFORM

PERFORM ==> GO TO

THEN = ELSE REVERSAL -~ Negate condition.

STOP STATEMENT SUBSTITUTION

THRU CLAUSE EXTENSION

TRAP STATEMENT REPLACEMENT

SUBSTITUTE ARITHMETIC VERB

SUBSTITUTE OPERATOR IN COMPUTE

PARENTHESIS ALTERATION - Move one parenthesis one
place to the left or right

ROUNDED ALTERATION -~ Change ROUNDED to truncation,
and vice versa,
MOVE REVERSAL =~ reverse direction: - of move in
simple MOVE A TO B, if the result would be lejal
in Cobol.

LOGICAL OPERATOR REPLACEMENT

Substitute

SCALAR FOR SCALAR REPLACEMENT =~ one

(non=-table) item reference for another, where the
result would be legal.

CONSTANT FOR CONSTANT REPLACEMENT

CONSTANT FOR SCALAR REPLACEMENT

SCALAR FOR CONSTANT REPLACEMENT

NUMERIC CONSTANT ADJUSTMENT

b, it

———t

LR A 60 s A > 1 A o OB o 1 s A b BBe et (AN K ¢ g aghe R ot e

77

COBOL SUBSET ACCEPTED BY CMS.l

! IDENTIFICATION DIVISION.

: PROGRAM~-ID, program-name,
t :
I [AUTHOR, comment-entry.]
1

|

(INSTALLATION, comment-entry.]

(DATE-WRITTEN. comment-entry.)

(DATE-COMPILED. comment-entry.]

(SECURITY. comment-entry.,]

(REMARKS. comment=-entry.]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

{SOURCE-COMPUTER. comment-entry.]

{0OBJECT-COMPUTER., comment-entry.)

[SPECIAL-NAMES. (([COl IS mnemonic-name]

———

P INPUT-OUTPUT SECTION.

FILE-CONTROL.

o [SELECT file-rame ASSIGN TO {INPUTL | OUTPUTi)}...)

; | NOTE: 0 <= { <= 9

DATA DIVISINN,

L FILE SECTION.

(ED file-name RECORD CONTAINS integer CHARACTERS

(LABEL RECORDS ARE { STANDARD! OMITTED }]

DATA RECORD IS data-nare,

level-nurber {data-name | FILLER }
{REDEFINES data=name=-2]

{{ PICTURE | PIC } IS character-string]

[OCCURS integer TIMES])

{WORKING~-STORAGE SECTION.

[77 level entries.]

(record entries .l...]
NOTE: Record entries are the same as in the file section,
except VALUE c¢lauses are permitted, Level 88 items
(condition names) are not supported, Legal PICTUREs are
signed and unsigned numeric, edited numeric, and
alpranumeric, The USAGE clause {s not supported, and

DISPLAY is assumed throughout. |

PROCEDURE DIVISION. {

(paragraphename.] (
ADD {ident-1 | 1it-1} (ident-2 | 1it-2),.. { TO | |
GIVING } ident-m

[ROUNDED] [ON SIZE ERROR imperative-statement] .

CLOSE filename-1 [filename~2]

COMPUTE identifier [ROUNDED] = arithmetic-expression

A —

s ar

- ———

[ON SIZE ERROR imperative]

DIVIDE {ident=l | 1it<1} (INTO | BY } {ident-2 |
lie~2}

[GIVING ident-3] [ROUNDED] [ON SIZE ERROR imperative] .

EXIT.

GO TO paragraph-name
GO TO paragraph-name~l [[paragraph-name~2] ...

DEPENDING ON identifier].

IF condition {statement-l | NEXT STATEMENT}

[ELSE (statement~2 | NEXT STATEMENT }] .

NOTE: 1logical operations AND and OR and comparisons =,
NOT GREATER THAN, etc,, are permitted, Arithmetic
operations within cthe conditional expression and
condition names are not supported. Sfgn tests and
class tests are supported.

MOVE ident-1 TQ ident-2 [ident-3]

MULTIPLY {ident-1 | lit-1} BY (ident-2 | lit-2}

[GIVING ident-3] [ROUNDED] (ON SIZE ERROR imperative] .

OPEN [INPUT tilename~1 [filename~2))

(OUTPUT filename-3 [filename=~4] |

PERFORM paragraph-name~1 (THRU paragraph-name-2]
PERFORM paragraph-name~l [THRU paragraphk-name-2]
{ident-1 | integer-1} TIMES.

PERFORM paragraph-name~l [THRU paragraph-name-2]
(VARYING identifier-l FROM {identifier-2 | literai-1}

BY (identifier=-3 | literal-=2}] UNTIL condition

s SEgEs

READ filename RECORD [INTO identifier]

AT END imperative

STOP_RUN.,

SUBTRACT [ident-1 | 1lit-1l} [ident-2 | lit-2) ... FROM

(ident-m | lit-m}

{GIVING ident-n] [(ROUNDED] (ON SIZE ERROR imperative] .

[AFTER ADVANCING {ident-2 | integer | mnemonic} LINES]

{ WRITE record-name [FROM identifier-~l])
H {
H
!
3

THE CMS.l RUN

The four phases of the CMS.l run are the ENTRY phLase,
the PRE-RUN phase, the MUTATION phase, and th POST-RUN
phase. The ENTRY phase is executed only when the user first
k) enters the system., Thereafter the PRE~-RUN, MUTATION, and [

; POST~-RUN phases are exected cyclically. !

| .
‘J I. The entry phase, l-
‘j The session will begin when the user enters the system by

'5 logging in and typing l

.- ——

seq run>cpms !

If all is well, the system will respond:

I AELCOME TO THE COBOL PILOT MUTATION SYSTEM

followed by:

v e e eehhma

e e o g i

P

. A AL S L T ETE SR A e, er e

81

PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:

The user should do just that. CMS.l creates several working
files of its own, whose names are variations of the source
file name formed' by adding suffixes to {t. The system
ckecks to see if those working files already exist. If they
do, the user can either continue the previous run on that
source file whkere he 1left off, or ke can start over from
scratch. Therefore, if the working files already exist, the
system asks:

DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?

If a new run is needed the system begins with the message
PARSING PROGRAM

A syntax error in the source program automatically aborts
the CMS.1 run. The user must correct the error and re-enter
the system. Errors are reported to the user as a source
program line number and the probable cause.

The system then issues the message

SAVING INTERNAL FORM

and asks

WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO
MAKE?

Since medium to large Cobol programs may generate tens of
thousands of mutants, most of which are simple
substitutions, the user may want to look initially at only a
sampling of the mutants. It has been our experience that

eliminating all of the non-equivalent mutants in a 10%

e sipr i

82

sample gives test data strong enough to eliminate at least
99% of all nonequivalent mutants,

CREATING MUTANT DESCRIPTOR RECORDS

II. The pre-run plase.

In this prase the user supplies test data and turns on
mutants. The system asks

DO YOU WANT TO SUBMIT A TEST CASE ?

and the wuser should respond YES or NO. The system will ask
WHERE IS filename~1 ?

(1f there is a SELECT statement for that file)

to which the user should respond HERE or <filename>

If it is HERE, the user enters the input data directly,
ending with the control~C for end of file.

The system then goes through the same procedure for ecach
input file named in a SELECT statement.

At this polnt the system will execute the program
iaterpretively on the test 1input. After finishing, the
input and output files will be displayed. The wuser |is
asked: ’

IS THIS TEST CASE ACCEPTABLE ?

To which the user should respond YES or NO.

If YES, the test case (input and output, along with the tire
used, record counts, and a bit map of statements executed)

are cataiogued for later use with mutant programs, 1€ %O,

the test case is purged from memory.

Ea

. s e

83

This process of entering test cases iterates until the user

states that no more are to be entered at this time.

II1I. The Mutatioﬁ Phase

At this time the system will ask

WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ?

unles all mutant types have already been enabled. The user
should respond ALL or NONE or SELECT or should give tlLe
nurbers of the mutant types to be used next, SELECT causes
the system to 1list eachk type that has not yes been
considered, and then ask for types.

The list of numbers should be terminated with the command
STOP. Ranges of types can be specified by TO. For example
the reply

14 20 to 25 stop

would enable the TRAP mutants and the data reference
substitution mutants.

At this time the test cases will be run against the mutant
programs. Tre time that this takes depends on the number of
test cases presented, the lengthk and “"density"™ of ttLe
program, and the types of mutants currently being
considered, For efficliency, a test case that does not
execute a glven statement is not executed on any mutant
whose mutation {s to that statement. The mutant could never

be killed {f execution never reaches the affected statement.

This is the purpose of the bit map saved witk the test case.

RIS 5 A o5 N e = 5000 748+ AR50y S M R A 152 2o

IV, Thre Post-Run Phase

After all the test cases rave been executed for each mutant
still alive, the system will display the statistics of the
run, indicating the number of mutants created and the aumber
still alive of eack type that has been considered, the
percentage of each type killed, and the number of each type
rarked equivalent. Now the user Las a chance to view the
mutants still remaining (either all of them, or selected
types) or he can send lnformatiqn about thke run to an output
file for later printing. It 1is whiie viewing the 1live
mutants at his terminal that the user has an opportunity to
rark the mutants equivaient., After the live wmutants, the
user has a chance for a similar review of the mutants marked
equivalent. He can "unmark"™ mutants at this time. The user
also is able to view or print the test cases at this time.
When asked about either the live or equivalent mutants or
the test cases, the wuser may respond YES or NO or QUTPUT.
OUTPUT means to send the information to the log file. To
end the post-run phase the user types either HALT, ending
tte session, but saving the temporary filies for future
resumption, or LOOP sending the system back in a loop to the
pre~run phase to enter more test data and/or conslder new
mutant types.

The user may terminate the session at any time a command |is

requested by typing KILL, but the state of the system files

——

e werem e

A D S

atter such an abnormal termination is undefined.
Continuation of the testing session may not be possible.
The user can receive an explanation of hkis options at many

points in the cycle by typing HELP,

CMS.l AUXILLIARY FILES

CMS.1 creates several files during execution. Some are
random access files used for processing the mutants and test
cases, and others are needed for the restart capability,
When the user provides the name of the file containing the
test program, CMS.l1 adds suffixes to that name to create
names of the auxilliary files. For example if the user
provided TEST-PROGRAM-1 as a source program tile rname, the
internal form of the program used by the 1interpreter and
decorpiler, would be stored in the tile TEST-PROGRAM=~1l.IF.
The test cases would be stored in TEST-PROGRAM-1,TD and
TEST=-PROGRAM-1.TS, and so fourth. One tile deserves special
discussion. That s the logfile (TEST=-PROGRAM=~1.LO in this
example)., This file contains

(1) A listing of the program, with line numbers.

(2) A statement about the percentaje of mutants

created.

{(3) A surmary of test case and mutant transactions, in

the order in which they occurred. ‘Whenever a test case

B e e e e e 2 AR s adAP U A o) sk oWl S T - R A A SN

B A TR T T U

35 |

is submitted, a message is 1logged about that, along
] with the filenames (or <HERE>) from whﬁch the data was
obtained, and whether the test case was accepted or
rejected. Mutant types are listed as thkey are enabled.

(4) After eack mutation phase the status is written to

: the file, exactly as it appears on the user's terminal.
(5) An optional listing of the live mutants, provided
} : if the wuser responds OUTPUT to the question about
viewing live mutants.
(6) An optional listing of the test cases, provided 1{f
the user responds OUTPUT'to that question. A listing
of the test cases is strongly recommended. Wrhen the
test data is displayed on the user's terminal, lines
must be truncated to 78 characters. The tull lines are

piaced in the log file.

14 C¥MS.1 does not automatically delete these working ftiles
after a run is completed. They are retained tor possible ;‘

resumption of testing. It is the responsibility of the user

-

,’-
T ey
-

to delete the files when they are no longer needed. The 109 L
! file is not automatically printed, either. Each run appends

to the end of the file where the previous run lett off. The

- -

user must print the file outside of CMS.1 if he wants a hard ;T

copy.

"-iin’ T

L

.
«—“‘A‘_- .

v e e

. "
~
b Sl SR
.
%

-

-

"

TR

e

. o e

P e T S

APPENDIX B
CMS.1 INTERNAL SPECIFICATIONS
Allen Acree
October, 1979
Document CMS_2.2
|
|
;
i
|
|

87

AD-A091 029 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A=~ETC F/6 9/2
ON MUTATION, (U)
AUG 80 A T ACREE DAAG29-80-C=0120
UNCLASSIFIED 6IT-ICS=80/12 NL
2.2

EE

-

(=]

o

SE=
m"!" MN N
o N o

IS
.|
““IE ..

22 s nae

‘CPFEEER
'.

er
4
fr
3
o

MRROCOPY RESOLUTION TEST CHART f
NATIONAL BUREAU OF STANDARDS-1963-A

as &

PART I. FILE FORMATS

SOURCE PROGRAM <filename>

The source program is assumed to be in a sequential i
system file, in the standard COBOL format. That is, columns
1-6 are for the sequence number (and are at this time
g . ignored), column 7 is either blank or contains a kyphen (for l
tte continuation of a non-numeric literal) or an asterisk
i (for a comment 1line). Information beyond column 72 is

ignored.

INPUT FILE (EXTERNAL)

The input file(s) can also be supplied by the user as

standard sequential files. The user only kas to tell CMS.1l

i the name of the file., The alternative is for the user to

omnm——
- .

enter the file directly while hLhe 1is {ia CMS.l. Wren

requested, the user should type the file into tkhe terminal,

=/

one record per 1line, just as 1if re were punching a card i
deck., The only editing that can be supported in this mode
: [is backspace-erase (control-L), and line=-kill (shift-del).
The end-of~-file is indicated with a control-c, It is of
course possible to create some input files outside CMS.1 -

using whatever tools the user has access to, and to create

Record sizes for lnput and output files are limited to 150

l
j

‘w the otkers "on the fly" in CMS.1l, If the user wishes.
!

L —— R evus B comon B s I oo

characters.

TEST FILES (INTERNAL) %
The internal test files will contain all test cases
that have been created at that time. There are two files
containing test information, the test status file, and the
test data flle,
TEST STATUS FILE <fllename>.ts
Each record of the test status file contains 42 words.
The first record contains global information.

word contents

1 1 {f INPUTO is used in the program
0 otherwise.

2 through 20 similar for INPUT1 to INPUTI
and OUTPUTO to OUTPUTI.

21 The total number of test cases that
khave been defined.

22 The number of test cases that were
defined prior to this pass.

23 pointer to the next record position
after the last, for appending.

24 through 42 Not used at this time.
This record will be followed by two records for each

test case. The first has the format:

word contents

1 The starting position of INPUTO in

R

<filename>.TD
.
2 The number of records in INPUTO. !J

3 through 40 Similar for the other flles.

41 The number of statements executed by
the original program on this testcase.
42 Not used at thkis time. [f
The second record contains a bit map for the !%

statements executed by this test case. If this bit map size
?v (530=42x1S) is not adequate, the syster parameter TSFRS, zﬁ
i whichk is currently set to 42, may be increased, and the ’?
system recompiled. The extra - space in the other record li
types will be wasted. 1
TEST DATA FILE <filename>.td

; The test data file contalns the actual test cases, ?
‘ with the input file(s) first, followed by the'éutput file(s)

of the original prograr. These will be in packed format ld'

) f#‘ (see PACK and UNPACK), with strings of repeated ckaracters [
ﬂ replaced by single characters and repeat counts. The sizes
:?‘ of each file buffer are set by the system parameters IBSZ [}

and 08szZ. In systems where random access files must have

fixed record lengths, IBSZ must be equal to 0BSZ.

MUTANT RECORD FILE <filerame>.mr
The mutant records are stored in binary format, at

four integers per mutant record, All records for a

ﬁ_._.w,
o
— i
o -~

particular mutant type are stored contiguously, followed by

-“.q—‘.
?

all records for the next rutant type, etc.

SR ALt

e s v A o h e o n.

e e o s -~ =

record. All the theader blocks remain core-resident during

e & T D

MUTANT STATUS FILE <filenamed>.ms
The record size for the mutant status file is 16
words. The first section of the file contains headers for

eachk mutant type.

mutant type
on or off ever (initially zero)
on or off this run (* ")

mst record pointer for status block
These may be packed at four hLeaders per 1l6-word

tke entire run.

The first record, before these Leaders, contains a
count of the total number of mutants in its first word. Tre
other words are not used.

For each mutant type there is then a status block, of

one record.

total mutants for this type

bit map length in words

mrf pointer for the first mutant record ot

this type
number of live mutants

nunber of dead mutants

number killed by trap(*)

number killed by time-out

number killed by data fault

nurber killed by initialization fault
number killed by I/0 fault in OPEN/CLOSE
nunber killed by attempt to read past EOF
number killed by writing too muckh

number killed by output too large for buffer |

nurber killed by array subscripts out-of-bounds
nurber killed by incorrect output }i'
aumber killed by garbage in the code array ‘-
* also includes attempt to execute beyond end 65 code,
such as would happen if a mutation deleted the -last STOP RUN
statement; and size errors where no SIZE ERROR clause is

specified.

* The status block will be followed by bit maps.

| live bit map | l}

| d;ad bit map |

| equiv. bit map |

In all of the bit maps, the first bit of each word s

not used. The bit maps are of varying lengths, depeanding on {?

93

the program and on the mutant operators. The bit map
lengths are rounded up to the nearest whole-record size.
The record size for this file is the systerm parameter MSFRS
(currently 16).

NOTE=---=--We make no provision tor keeping information
on how each individual mutant was killed. We keep the full

matrix of counts of mutant types versus kill mode.

INTERNAL FORM <filename>,.if

SYMBOL TABLE \
!
STATEMENT TABLE %

CODE ARRAY > binary copies gfrom INFORAM
and HASYH

INIT {

HASH TABLE /

INIT is the initial segment of memory containing 1literals,

PICTURES, and memory initialization information.

OUTPUT FILE <fllenamed.lo

This is a sequential file containing information on
tke run. Its contents are controlled by the user, using the
OUTPUT command. Typical contents would be a listing of the
source program, the test cases, the status after each pass
through the system, and a listing of some or all of the live

mutants. i

INITIAL.HASH. PACK

The sare as HASH-TABLE but containing only the

Tt R

e e o A gt

[Upite ounpaipttoag ith- iR

94

reserved words and their tokens. This is stored as a packed
sequential file, In this case "packed” means that we store
a count of null records, followed by a non-null record,
followed by a count of null records, etc. until all records

(up to the hash table size) are accounted for.

e i]

-

il

r——
[SR

=2 = 3

[p——— |

[—

»‘,:i h r‘n;"‘;quw‘r;{‘v‘u;& ' - A ST -
’W-» - - e

95 §

PART II. INTERNAL FORM SPECIFICATIONS

SYMBOL TABLE
i_ The symbol table is an 10xN array of integers. A
simple data item (group or elementary) is described by one
row in the array. A table item is described in two rows,
the second being a dope vector. Some conventions used are
that field 1 in each row (record) points to the hash table
entry, for the name. If che’item kas no name (such as a
filler or literal), fleld 1 is zero. Field 2 is always a
code for the type of the record. 1Its value determines the

reaning of the other fields,

! RON 1: the program name
Fleld 1 points to the name, fields 2 to 4 hold inteééts

for the date of last compilation, and the other fields

l are not used.

} RON 2: INPUTO

fielid-1 i{s used for the hash table pointer to the name

of the flle (as it s known to the program).

l field-3 1s a pointer to the symbol table entry for the

data record.

i‘ fleld-6 is the record length, (field-l is 0 if there

AR LR .. e R

. s
= NS, to i

is no SELECT clause for this device)

ROWS 3 throughk 21
Like row 2, for INPUT1 to INPUT9, OUTPUTO to OUTPUTI.

ROW 22 The top-~of-page mnemonic for the output files

field-1l points to name in hLashk, if one has been !

declared, otherwise it is zero. i

avomee

DATA ITEMS . g

field meaning (.

1 Index of the identifier in the hash table, Py
so that print name can be recalled. For
FILLERS, this is zero. .

' 2 A code for the type of the object.
‘ for unsigned numeric identifier
for signed numeric identitfier
for non-numeric identifier

for edited numeric item

for group item

r———s
U

NP WN

' ;‘;‘ 3 The level number

4 Pointer to the PICTURE string in program
memory for edited numeric items.
OR the decimal position (from right) for
unedited numeric items.
OR not used.

J =

bt

5 A pointer to the start of the item in program
memory. For an item in a table, this is the
constant term in the address calculation,

) 6 The length of the item, in characters,
; All items are stored with usage of DISPLAY.

e —

Trhe depth of the i{tem in the table structure.

,_,
R

e
.—4._‘4:
~

R, P T S Ll E o TERN - SR -
ST ol AN § DR~ .. .
W- - - - - - - .- ——

e —— ————— e

T wmo Ce s
At b g At e
el a e A ? "g._ B

(0 for scalars, 1 for one-level tables or for
rows in two=level tables, 2 for two-level
tables entries.)

8 Pointer to VALUE string in program memory.
10 Th.e source program line number on which the ftem
description began

SECOND RO FOR TABLE ITEMS
field meaning

2 code = &

4 the multiplier for the first subscript.

5 the multiplier for the second subscript.

8 The maximum value for subscript-l.

7 The maxirur value for subscript-2.

8

The nurber of OCCURances of the item.

LITERALS DEFINED IN THE PROCEDURE DIVISION

field

meaning

2

4
5
5

NOTE:
of this

code = 7 for nureric literals

code = 3 for non-numeric literals

code = 10 for the "twiddle” of a numeric literal
decimal position, for numeric literal

pointer to value in literal pool

length

SPACES and ZERO (and twiddles of ZERD) have entries

format which are present by default, even if not

used in the program,

PARAGRAPH NAMES

field meaning

polnter to name
code = 9

statement table index of tirst statement

> W NN

staﬁement table index of last statement

The symbol table is stored in the same rder as the
items are encountered in the code. 1In particular, entries
for data items defined in the DATA DIVISION are stored
almost line for line as they appear in the source code, with
nesting being implicit in the 1level numrbers and the
sequence, One deviation from this Is the inclusion of dummy
FILLER entries of 1lengthk zero between elementary 1items.
This is to facilitate the mutant opera:ot‘ that inserts
fillers to avoid having to change procedure division

references,

MEMORY

The first 30 characters of memory are used as a
temporary arithmetic register. Following tkat comes the
congtant data area., This area includes:

PICture strings - for edited numeric items.

There are 34N words, where N is the 1length of the

picture gstring. Word 1 1is the length of the string;

word 2 is the number of digit positions; and word 3 ls

the number of digits to the right of the decimal point.

99

Then follows the picture string, in Al format, An
editing MOVE uses this string to interpretively execute
the MOVE instruction.

VALUE literals

for nureric items - word 1 is the number of digits,
word 2 is the number of digits in fraction, and words 3
to n+2 are the digits themselves. An operational sign
is coded in the last word with the 1last digit. for
nonnumeric items ~ word 1 is the 1length N in
characters, and words 2 to N+1 are tke characters, in

Al format,

Procedure Division literals
Digits or chkaracters only. Since these iftems hLave
individual symbol table rows, the extra information
about length, decimal position, etc, is stored there.
} E SPACES and ZERO are stored in positions after the
; arithmetic register in a format that can be referenced
either as VALUE or Procedure Division iiterais,

depending on the start pointer.

i ' After the constant area comes the variabie area. AZZ

j data is storage on a USAGE IS DISPLAY basis, one character
1 . per word. Since some rutations change the data structure,

) i reallocation between executions is sometimes necessary.

STATEMENT TABLE

The statement table is composed ot triples ot

- ———

integers.

field 1: the starting position of an instruction

in the code array. When a procedure division statement

is

mutated,

the original code 1is not modified.

Instead, a mutated copy of the instruction 1is created

and appended

to the end of the code array. Field 1 is

then modified to point to this mutant copy of the

instruction.

field 2: The line aumber of the statement on the

source listing.

continuation in a sentence (no period after previous
statement.)
value greater

clause.

INTERNAL FORM OF PROCEDURE DIVISION
Each instruction is preceeded by a word containing tkre

length 92f that fnstruction.

field 3: A value of 0 means this staterment is a

A value of 1 weans a new sentence, A

than 1 means the beginning of an ELSE

meaning syntax
MOVE <MOV><nd><source><{dest=1>,, .{degt-1>
ADD <ADX<rnd><size><r><op~1>,..L0p~r>

(rnd is 0 for truncation, 1 for round)
(size 1s 0 L1f no SIZE ERROR clause {
has been specified, and 1 if it has. '
The SIZE ERROR branch immediately follows
trhe current statement, followed by

101

the no error branch.) 5
ADD~GIVING <ADG><rnd><size><n><op=1>...<op~n><dest> é
SUBTRACT <suU><rnd><size><n><op=1>.. . op~-n> i
SUB=-G1IV <SUG><rnd><size><n><op-1>... op=n><dest> :
MULTIPLY <MU><rnd><size><op=-1><op=2>
MULT-GIV <MUG><rnd><size><op-1><op~2><dest>
DIVIDE <DI><rnd><size><op~1><Lop=-2>
DIV-GIV <DIG><rnd><size><op=-1><op~2><dest>
COMPUTE <co><rnd><sized><ident><arith. exp.>

note: the arithmetic expression
is interpreted by a calculator
subroutine.

GO TO <GO><procedure>

GO0 TO...DEPEND <GOD><n><proc-~1>...{proc-n><ident>

PERFORM <PE><{procedured>{procedure=2> .

(procedure-~2 may be null if no

j THRU clause is specified.)
PERFORM=UNTIL <PEU><proc=~1><proc=2><conditiond>

} PREFORM=VARYING <PEV><proc=-1><proc=2><ident><from><by>

} <REP1>¢pl=-stmt-ptr><p2~code~ptr><cond.>

REPl is the lteration control instruction.
5 On return from the PERFORM, the control
| goes to this instruction. Pl-stmt-ptr is
a statement table pointer corresponding to
: the symbol table pointer proc-l.
| P2~-code-ptr is a code pointer for the
' insertion of the return.

[PERFORM=TIMES <PET><procedure><procedure-2><ident>
<REP2><{count>{start>{stop>

f Similar to REP1l, but count holds tke

P Lt S Cp——

no op

return

IF

NEGATED IF

OPEN

CLOSE
READ

WRITE

STOP RUN
TRAP

value that was in ident when the PET
was first executed.

Start and stop are statement table
pointers for the perform range.

<RET><0>
<RET><addr>

note: each paragraph is ended with
a "no op" statememt. When a PERFORM
statement is executed, it first
ctanges the no op at the end of its
range to a return by inserting the
recurn address (in the statement
table) and then transferring to

tke beginning of the range.

When a RETURN is executed, it
transfers to the address in the
instruction and also changes itself
to a no op by changing its address
field to 0. '

No op's are also inserted when NEXT

SENTENCE is used or impiled in an IF

statement,
<IF><else=-stmt=-ptr><condition>
pointer is for transfer if condition
is false.
<NIF><else-stmt-ptr><condition>
<OP><1,.20>

(for which file)

<CL><1,.20>
<RE><1..10>¢from=ident>
<WR><1..10><¢from=1dent><{advance>
note: advance is pointer to symtab.
Target is either top-of-page mne-
monic, an identifier, or a numeric
literal,

<STOP>

<TRAP>

Fr—r——y
[S

=] =

==

Py —
O] . 3

T e S e o e e

103

NOTES ON THE INTERNAL FORM

1.

3.

"i{dentifier®,"ident”, and "id", as well as "op" are
pointers to symbol table entries describing identifiers
or literals. The symbol table will contain information
about type, length, location, etc,

Any operand could also be a table reference. In this
case, instead of a single integer we would Lave
fopl {index-1]) or {op] (index~1] {index-2). The
interpreter will know from Ehe syrbol table entries ftor
op whether 0,1, or 2 indices (subscripts) are needed for
a valid reference. Index-1 (and index~2) are also
references via the symbol table . to simple
(unsubécripted) variables or to numeric literals.
"procedure” and "proc®™ are pointers to symrbol table
entries describing paragraph names. The symrbol table
will contain pointers to the first and last statements

in the paragraph, in the statement table.

MUTANTS

The mutant descriptions are stored in four integers.

Tre first 1is the mutant type, and the others (not all types

use all four integers) are used for auxilliary information,

as detalled in PART III.

104

PART III. DETAILS OF MUTATION PROCESS

MUTANTS

DECIMAL Move implied decimal in numeric items one place to

the left or righkt, if possible. !

DIMENS]1 Reverse row and column OCCURS counts in a two level 2;
; \)
; i table,
1 DIMENS2 Iacrement or decrement (by 1) an OCCURS count. !j

INSERTF Insert a filler with PICTURE X.

ALTERF Alter a filler with PICTURE X(r) to X(n-1) or X(n+l) -
if possible.

REVERSE Reverse adjacent elementary items in a record.

—————

FILEREF Change a file reference from one input file to

another, etc.

DELETE Delete a statement (change it to a NO~OP).

> .
L T

GO~PERF Change a GO TO to a PERFORM, unles the last

.
LI V)

statement in the paragraph is a stop or transfer of control

¥ e
=

(in whict case it would make no difference, .

PERF~GO Change a PERFORM to a 50 TO.

= =0 =3

THENELS Reverse the "then" and "else” clauses in an IF

(negate the condition).

-
(RS

STOPINS Insert a STOP RUN in the program.

THRUEXT Extend the TRHU range of a PERFORM,

e e —— o
T,
e -
-)

. t%; TRAP Change a statement to a TRAP, which always fails when

R N S TR R T S
i ;,;,..f'h}!u‘/d?ﬁ‘hﬁ';* - L TN o A
9 (e - : _

executed. This is for statesent coverage information.

ARIVERB Ckange one arithmetic verb to another.

ARIOPER Change an arithkmetic operator in a COMPUTE

statement.

PARENTH Alter the parenthtesization of an arithmetic

expression in a COMPUTE statement.

P

ROUND Change rounding to truncation, or vice versa.

MOVEREV Reverse the direction of the MOVE in a simple binary
oot move, if such would result ir a legal COB30L move. l
LOGIC Crange a logical comparison to some other comparison.

S-FOR-S Substitute one scaiar (unsubscripted) ramed data

reference for another.

C-FOR-C Substitute a constant (numeric or nonnumeric

literal) for another.

C-FOR=S Substitute a constant for a scalar,

S=-FOR-C Substitute a scalar for a constant.

CONSADJ Increment or decrement a numeric literail by 1 or by

1 whickever is larger.

: MUTANT DESCRIPTORS

DATA MUTATIONS

TN S (1) <DECIMAL><sym.tab.loc><+l | =1><x>

(2) <DIMENS1><{sym.tab.locd{x><{sym.tab.loc.=~2>

for "reverse OCCURS numbers for these two
&l

locations®. They are assumed to be the

two dimensions for a two-level table.
(3) <DIMENS2><sym.tab.loc><code><x>
where code = 0 for "add 1 to OCCURS"
code = 1 for "subtract 1 from OCCURS"
(4) <INSERTF><symbol table locationd<x><x>
(5) <ALTERF><sym.tab,loc><+1[|=1><x>
(5) <REVERSE><sym.tab.loc.><next.elementary.loc><x>
INPUT/OUTPUT MUTATIONS
(7) <FILEREF><statement><x><{new file~code>
CONTROL STRUCTURE MUTATIONS
(8) <DELETE><statement><y>£x>
(3) <GO-PERF><{statement><x><{x>
{10) <PERF=GO><statement><x><x>
(11) <THENELS><{statement><x><x>
(12) <STOPINS><statement><x><x>
(13) <THRUEXT><statement><new paragraph limie><x>
(14) <TRAP><statement><x><x>
PROCEDURAL MUTATIONS
(15) <ARIVERB>{statement><new operation><x>
to change. ADD to SUBTRACT, etc¢

(16) <ARIOPER><statement><field><new operationd>

to change an operation in a COMPUTE.

"field” is the location in code relative
to the beginning of the statement. (op code
location.)

(17) <PARENTY><statement>{from-field><to~field>

RN Lt RXCRT)
o= adts— gt o - e

(13) <ROUND><statement><x><x>

(19) <MOVEREV><statement><x><x>

(20) <LOGIC><statement><{field><new value>

(21) <S-FOR-S><statement><field><new symtad loc.>
(22) <C~FOR-C><{statement><{field><new loc>

{23) <C-FOR~S><{statement><field><new loc>

(24) <S=FOR=C>¢statement><field><new loc>

F9

A T

ATy O

: (25) <CONSADI><statement><field><new loc>
{
!
A Hence thre mutants can be stored in a file of
i .
j 4 x N integers.

o

{

| |
7 !
Ny
)
i
‘i. 4
!
| :

- 4“ ‘
—— v [—

e g s o < T T ""”“"“"‘W‘—--——!ﬁ s
sy !

PRI AP ot v e v e e o

103

APPENDIX C

A CMS.1 Script

R}

[SO,

r

ISR
1O trlhtptn g, s - .

109

The following is & script of a CNS.] run on & program or(glnollz from
the Army SIDPERS system. The pProgram has been modified scsevhat, mainly in
the reduction of the record sizes to make & better CRT display. The program
takes as input two files, representing and old backup tape and & new one.
The output is & summary of the changes. The input files are assumed to bde
sorted on a key field. The program has 119% mutents, of which 21 are easily
seen to be equivalent to the original program. Initially ten test casses were
genecrated to eliminate a3ll of the nonequivalent mutants. Subsequently a
subset of five test cases was found to be adequate for the task. The entire
run took about 10 minutes of clock time, and 2 minutes and 13 seconds of CPU
time on the PRIME 400. Note that this is a trace of a terminal session. The
output of the testcases {8 truncated to 70 characters to avoid extrs
linefeeds. The full output is available on hardcopy to the tester.

WELCOME TO THE COBOL PILOT MUTATION SYSTEM

PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:>log-changes

DO YOU WANT TO PURGE WORKING FILES FOR A PRESH RUN ?>yes

PARSING PROGRAM

SAVING INTERNAL PFORM

WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE?>100
CREATING MUTANT DESCRIPTOR RECORDS

PRE-RUN PHASE

DO YOU WANT TO SUBMIT A TEST CASE ? >program

PROGRAM LAST COMPILED ON 1 11 80.

1 IDENTIFICATION LIVISION.

2 PROGRAM=ID. POQAACA.

3 AUTHCR. CPT R W MOREHEAD.

4 INSTALLATION. HQS USACSC.

S DATE-WRITTEN. CCT 1973,

6 REMARKS.

? THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN THE ETP.

8 ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 OLD ETF AND THE NEW ETP ARE THE INPUTS. BUT THERE IS NO
10 FURTHER PROCESSING OF THE ETP HERE. THE ONLY OUTPUT IS A
11 LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS
12 FOR HQ USE ONLY AND HAS N¥O APPLICATIOMN IN THE PIELD.

13 T T I T

14 MODIPIED POR TESTING UNDER CPMS BY ALLEN ACREE

15 JULY, 1979.

16 ENVIRONMENT DIVISION.
17 CONPIGURATION SECTION.
1e SOURCE-COMPUTER. PRIME.
19 0BJECT-COMPUTER. PRIME,
20 INPUT-OUTPUT SECTION.
21 FILE-CONTROL.

22 SELECT OLD-ETPF ASSIGN INPUTI.
23 SELECT MEW-ETF ASSIGM INPUT2.
24 SELECT PRMTR ASSIGM TO OUTPUTI.

28 DATA DIVISION.
26 FILE SECTION.
27 D OLD-ETP

20 RECORD CONTAINS 80 CHARACTERS

29 LABEL RECORDS ARRE STANDARD

30 DATA RECORD IS OLD-REC.

k)| 031 OLD-REC.

2 03 PILLER PIC X.

33 03 OLD-KEY PIC X(12).
34 03 FPILLER PIC X(67).
s D NEW-ETP

3 RECORD CONTAINS 00 CHARACTERS

PyeT.

Mg ecaar w3

RSN

LABEL RECORDS ARE STANDARD
DATA RECORD IS NEW-REC.

01 NEW-REC.
03 PFILLER | 2 {4
03 NEW-KEY PIC
03 FILLER rc
PD PRNTR

RECORD CONTAINS 40 CHARACTERS

LABEL RECORDS ARE OMITTED

DATA RECORD IS PRNT-LINE.
01 PRNT-LINE PIC
WORKING-STORAGE SECTION.
01 PRNT-WORK-AREA.

03 LINEL pIc
03 LINE2 PIC
03 LINE2 PIC

0l PRNT-OUT-OLD.
03 WS-LN-1.
0S FILLER 244
05 FILLER pIc

05 NI PIC
05 FILLER pIC
03 WS-LN-2.
0S5 FILLER PIC
05 FILLER PIC
0S5 LN2 : PIC
05 FILLER PIC
03 WS-LN-3.
05 FILLER PIC
0S FILLER PIC
0 LN) PIC
0S FILLER PIC

01 PRNT-NEW-QUT.
03 NEW-LN-l.

05 FPILLER PIc

0S N-LNI} PIC

05 FILLER PIC
03 NEW-LN=-2.

05 FILLER PIC

0S5 N-LN2 PIC

05 FILLER pIC
02 NEW-LN-3.
05 FILLER PIC

05 N-LN3 PIC
05 FILLER pPIC
PROCEDURE DIVISION.
0100-OPENS.

OPEN INPUT OLD-ETP NEW-ETP.
OPEN OUTPUT PRNTR.
0110-OLD-READ.
READ OLD-ETP AT END GO TO 0160-OLD-EOP.
0120-NEW-READ.
READ NEW-ETP AT END GO TO 0170-NEW-EOP.
0130-COMPARES.
IF OLD-KEY = NEW-KEY
NEXT SENTENCE
ELSE GO TO 0140-CR-ADD-DEL.
If OLD-REC = NEW-REC
GO TO 0110-OLD=-READ.
MOVE OLD-REC TO PRNT-WORK-AREA.
PERFCRM 0210-0LD-WRT THRU 0210-8X1T.
MOVE NEW-REC TO PRNT-WORR~AREA.
PERFORM 0200-NW-WRT THRU 0200-EXIT.

S b - L ——

Xe
X(12).
X(67).

X(40) .

X(30).
X(30) .
x(20).

X VALUE SPACE.
XXXX VALUE 'O ‘e
X(30).

XXX VALUE SPACES.

X VALUE SPACE.
XXXX VALUE 'L '.
x(30) .

XXX VALUE SPACES.

X VALUE SPACE.
XXXX VALUE ‘D °*.
X(20) .

XXX VALUE SPACE.

XXXXX VALUE ' N ‘.
X(30).
XXX VALUE SPACE.

XXXXX VALUE * E ‘.
X(30) .
XXX VALUE SPACES.

XXXXX VALUE ' W °,
X(20) .
XXX VALUE SPACES.

RS
L

]

[

ro———rrs
[N

- — [E———
P— [——

—-

1c0
102
102
103
104
108
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
21
122
123
124
128
126
127
128
129
130
131
122
133
134
138
136
137
138
139
140
141
142
143
144
148
>yes

GO TO 0110-OLD-READ.
0140-CK=-ADD-DEL.
If OLD-KEY > NEW-KEY
MOVE NEW-REC TO PRNT-WORK-AREA
PERFORM 0200-<i%-WRT THRU 0200-EXIT
GO TO 0120-NEW-READ
ELSE GO TO 0150-CK-ADD-DEL.
0150-CKX-ADD-DEL.
MOVE OLD-REC TO PRNT-WORK~-AREA.
PERFORM 0210-OLD-WRT THRU 0210-EXIT.
READ OLD~ETF AT END
MOVE NEW-REC TO PRNT-WORK-AREA
PERFORM 0200-NW-WRT THRU 0200-EXIT
GO. TO 0160-OLD=-EOF.
GO TO 0130-COMPARES.
0160-OLD-EOF.
READ NEW-ETF AT END GO TO 0180-EOQJ.
MOVE NEW-REC TO PRNT-WORK-AREA.
PERFORM 0200-NW-WRT THRU 0200-EXIT.
GO TO 0160-0LD~-EOPF.
0170-NEW-EOF.
MOVE OLD-REC TO PRNT-WORK-AREA.
PERFORM 0210-OLD-WRT THRU 0210-EXIT.
READ OLD-ETF AT END GO TO 0180~ECJ.
GO TO 0170-NEW-EOF.
0180-E0J. .
CLOSE OLD-ETF NEW-ETF PRNTR.
STOP RUN.
0200=-NW=-WRT.
MOVE LINE) TO N-LN1.
MOVE LINE2 TO N-LN2.
MOVE LINE3Y TO N-LN3.
WRITE PRANT-LINE PROM NEW-LN-1 AFPTER ADVANCING 2.
WRITE PRNT-LINE PROM NEW-LN-2 APTER ADVANCING 1.
WRITE PRNT-LINE FROM NEW-LN=3 AFTER ADVANCING 1.
0200-EXIT.
EXIT.
02} 0-0LD-WRT.
MOVE LINE1l TO LNIl.
MOVE LINE2 TC LN2.
MOVE LINE3 TO LN3.
WRITE PRNT-LINE FROM WS-LN-l APTER ADVANCING 2.
WRITE PRNT~LINE FROM WS-LN-2 AFTER ADVANCING 1.
WRITE PRNT-LINE FROM WS-LN-3 APTER ADVANCING l.
0210-EXIT.
EXIT.

A test case for this program is & pair of input files. In

111

Cms.1

these may be created outsldc the system and referenced by nsae, or say be
entered “on the fly".

WHERE 18 OLD~ETF?

>1¢9

WHERE IS NEW-ETP?

>1cé

OLD-ETF PROVIDED TO THR PROGRAM

1123456709012111IIEIIIT0IIIIIIIIIRRRRKRRKKKKLLLLLLLLLLNNNNNNNNNNDBBSBBBBRBBGGGGE
32345678901 23YYYYYYYYYYGGGGGCCGGGPPPPPPPPPPODODDDDDDDSSSSSEESSEXXXXXXXXXXEEEEE

NEW-ETP PROVIDED TO THE PROGRAM

N ATOTEL o YT B R e Wb 71 Aoy momn 21

P S

-

”»

112345678901 2000
J234567890)123YYYYYYYYYYGGGGCGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
345678901 234UVUUGUUUUUHHHHHBRHRHGGGGGGGGGGDDODDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS WRITTEN BY TRRE PROGRAN

711234567890121II11IIITII0J33333
JIIKKKKKKKKKKLLLLLLLLLLNNNNNNN
NNNBBBBBBBBBBGGGGCCC

112245678901 200000000000000000
000000000000000000000000000000
00000000000000000000

J234567890123IYYYYYYYYYYGGGGGGG
GGGFFPFPFPFFFFODDDDDDDDLSSSSSSS
SSSXXXXXXXXXXEEEEEEE

J224567890123YYYYYYYYYYGGGGGGG
GCGFPFFFFPPPFDDDDDDDDDDSSSSSSS
SSSXXXXXXXXXXEEEEEEE

345678901 234UUUUUUYUUUHREHHAHE
HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS
SSSEEEEEEEEEEAAAAAAA

Tmz XEMmZ OO0 Emz O¢cO0O

THE PROGRAM TOOK 94 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >no
MUTATION PRASE
WHAT NEW MUTANT TYPES ARE TO BEZ CONSIDERED ? >select

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME.

4 *se% INSERT FILLER TYPE eeee

5 *eoe PILLER SIZE ALTERATION TYPE eeee

6 *eee ELEMENTARY ITEM REVERSAL TYPE <¢eee
7 #e¢® PILE REPERENCE ALTERATION TYPE #ree
8 *ees STATEMENT DELETION TYPE eeee

10 *ese PERFORM --> GO TO TYPE eeee
11 #9#e THEN -~ ELSZ REVERSAL TYPE ®¢ee¢
12 teee STOP STATEMENT SUBSTITUTION TYPE *eee
13 #ses THRU CLAUSE EXTENSION TYPE eeee
14 *ese TRAP STATEMENT REPLACEMENT TYPE eees
19 *see MOVE REVERSAL TYPE *9¢e
20 es0e [OGICAL OPERATOR REPLACEMENT TYPE ®¢we
21 sees SCALAR FOR SCALAR REPLACEMENT ee¢ee
22 *e¢e CONSTANT POR CONSTANT REPLACEMENT oe¢ee
23 *see CONSTANT POR SCALAR REPLACEMENT e¢eee
28 *eee CONSTANT ADJUSTMENT #ewe
TYPES ? >4 to 14 stop
--= TESTCASE 1 ~=-
250
284 CONSIDERED 224 KILLED 60 RENAINM
MUTANT STATUS
TYPE TOTAL LIVE PCT BQUIV
INSZRT 4 7 82,93 o
PILLSZ 38 14 63,16 0
ITEMRV 3 0 100.00 0
riLes s 1 80,00 0
pELETE LY 13 73,93 0

———

MR AL

c—

PER GO ? 2 7.4 o
IF REV k) 1 66.67 0
STOP 53 10 8l.13 0
THRU 8 2 75.00 0
TRAP S4 10 61.48 0
TOTALS

284 60 78.87 0

DO YOU WANT TO SEE THE LIVE MUTANTS?>no
DO YOU WANT TO SEE THE EQUIVALENT MUTANTS?>no
WOULD YOU LIKE TO SEE THE TEST CASES?>no
LOOP OR HALT ? >loop
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?
31lels
WHERE 1S NEW-ETF?
>1leS
OLD-ETF PROVIDED TO THE PROGRAM

00000000000121IIITITITIIIIIIIIIIIRKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBAGGGGC
1123456789012 IITIIIIIIJIIIIIIJIIKRKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGP PP FPPFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXYXXEEEEE

NEW-ETF PROVIDED TO THE PROGRAM

112345678901 2T1IIIIIITIIIIIIIIIIINKRRKKXKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFPFPPIFPDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS WRITTEN BY THE PROGRAM

o 000000000001 2IXIITIIIITITIIIIIII
L JJIKKKKKXKKKKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGSGGGE

THE PROGRAM TOOK 44 STEPS

IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?

>lcl4

WHERE IS NEW-ETF?

>les

OLD=-ETF PROVIDED TO THE PROGRAM

11234567890121111ITIIIIKIIIIIIIIINKKKRKKKRKRLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890]123YYYYYYYYYYGGGGGGGGGGPPPPPPPPFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEZW-ETF PROVIDED TO TRAE PROGRAM

1234567890121 1TI1ITITJIIIIIIIIIRKRRKKRRRELLLLLLLLLLNNNNNNNNNNSBBBBBBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGCGGGPPPPPPPPFPDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS WRITTEN BY THAE PROGRAM
11234567890121111T1111IKIIIIII
JIIKKKKRKXKXKLLLLLLLLLLNNNNNNN
NNNBBBRBBBBRBBGGGGGGG
T1123456789012TITTITIITILIIIIIIS
JIIKKKKKKRKKKLLLLLLLLLLNNNNNNN
NNNBBBBBBBBBBGGCGGGRG

TRZ PROGRAM TOOK 48 STRPSB

£MZT Uro

IS THIS TEST CASE ACCEPTABLE ? >yes

DO YOU WANT TO SUBMIT A TEST CASE ? >ves
WHERE IS OLD-ETF?

>lell

WHERE IS NEW-ETF?

>lc}

OLD=-ETF PROVIDED TO TRE PROGRAM

00
NEW-ETF PROVIDED TO THE PROGRAM

1123456789012IITIITITIIIIIIIIJIIIRKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBRBBBBBBBBBGGGGE
J234567890123YYYYYYYYYYGGGGGCGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSAXXXXXXXXXEEEEE
345678901 234UUUUUVUUUUHHHHHHHHRHHGGGGGGGGGGDDDDDDODDDSSSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS WRITTEN BY THE PROGRAM

000000000000000000000000000000
00000000000000

1123456789012ITTITITIIIIIIIIII
JIJKKKKKKKKKKLLLLLLLLLLNNNNNNN
NNNBBBEBBBBBBBGGGGGGS

J224567890123YYYYYYYYYYGGGGGGG
GGGFFPFFFPFFPFDDDDDDDDDDSSSSSSS
SSSXXXXXXXXXXEEEEEEE

345678901 234UUVUVUUUUUHHHHHHEH
HHHGGGGCGGGGGCDDDDDDDDDDSSSSSSS
SSSEEEEEEEEEEAAAAAAA

Tmz EmZ ImZ Oro

THE PROGRAM TOOK 64 STEPS

IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?

slel

- WHERE 1S NEW-ETF?

2 >lell

i‘ OLD-ETF PROVIDED TO THE PROGRAM

1123456789012112IIIITIIIIIIIIIIIIIRKKRKNKKKKLLLLLLLLLLNNNNNNNNNNEBBBBBBRBBGGGGE

J234567890123YYYYYYYYYYGGGGGGGCCGPPFPPPFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEELEE
345679901 234UVUUUYUUUUHHHHHHHHHHGGGGGGGGGGDODDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

. NEW-ETP PROVIDED TO THE PROGRAM

'i 00

t PRNTR AS WRITTEN BY THRE PROGRAM

;? ¥ 000000000000000000000000000000
b 00000000000000

£
"
0 11234%567890121IIIIIIT11I1JJJJ3JJ
L JIIRKKRKKKKRKLLLLLLLLLLNNNNNNN
D NNNBBBBOBBBBBGGGGGGG

(+]

L

J234567890123YYYYYYYYYYGGGGGGG
GGGPPPPPPPPPPDDDDDDDDODDSSS5SSS

SSSXXXXXXXXXXEEEEEEE

345678901 234UVUUUUUUUUHRRHHRKHNR
HHHGGGGGGGGGGDDDDODODDDSSSSSESS
SSSEEEEREEEEEAAAAAAA

{
THE PROGRAM TOOK 64 STEPS 4|
1S THIS TEST CASE ACCEPTABLE ? >yes !
DO YOU WANT TO SUBMIT A TEST CASE ? >no
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >all

oro o

i ~== TESTCASE 1 ---
f 250
; 500
R 750
{ 814 CONSIDERED 640 KILLED 174 REMAIN
| . ~=e TESTCASE 2 —--
[234 CONSIDERED 82 KILLED 152 REMAIN
| == TESTCASE 3 ~--
; 152 CONSIDERED 1 RILLED 151 REMAIN
X ~—= TESTCASE 4 -
bt 151 COMSIDERED 61 KILLED 90 RENAIN
i -== TESTCASE 5 ~-- {
: i 90 CONSIDERED 69 KILLED 21 REMAIN
3 MUTANT STATUS
TYPE TOTAL LIVE PCT EQUIV
INSERT a1 3 92.68 0
FILLSZ k7 12 68.42 0
| ITEMRV 21 0 100.00 0
{ FILES 5 0 100.00 0 ‘
DELETE 54 1 9a.ls 0
PER GO 7 0 100.00)
1F REV 3 0 100.00 0
STOP 53 0 100.00 0
: THRY) 0 100.00 0
i . TRAP 54 0 100.00 0
L MOVE R 13 0 100.00 o
: LOGIC 1% 1 93.33 0
'ﬁ : SUBSFS 704 4 99.43 0
) sSuBCPC 12 0 100.00 0
¢ SuUBCFS 58 0 100.00 0
i C ADJ 12 0 100.00 0
S TOTALS
b 1098 210 98.09 o
i DO YOU WANT TO SEEZ THE LIVE NUTANTS?>yes
i THE LIVE MUTANTS

POR EACH MUTANT : HIT RETURN TO CONTINUE. TYPE *‘STOP* TO STOP.
TYPE 'EQUIV' TO JUDGE THE NUTANT EQUIVALENT.

seee INSERT FILLER TYPE eeee

TRERE ARE 3 NWUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes

A PILLER OF LENGTR ONE HAS BEEN INSERTED APTER
TRE ITER WHICR STARTS OM LINE 352

ITS LEVEL NUMBER IS5 3

i >
! A PILLER OF LENGTN ONE HAS BEEN INSERTED APTER
THRE ITEN WHICH STARTS ON LINE 53

—ee -

- —— .
: - <.
‘\s&‘g

-~y o

g A - o A St oy At e

imT

T
‘e
o
-

.~

. e e

&

i
|

116 L’

ITS LEVEL NUMBER IS 3

1 >
' A FILLER OF LENGTH ONE RAS BEEN INSERTED APTER
THE ITEM WHICH STARTS ON LINE 69

ITS LEVEL NUMBER IS 3

> |
dee® FILLER SIZE ALTERATION TYPE eeve
THERE ARE 12 MUTANTS OF THIS TYPE LEPT. ;

D0 YOU WANT TO SEE THEM?>yes i.
THE FILLER ON LINE S8 HAS HAD ITS SIZE DECREMENTED BY ONE.

> i
TRE FILLER ON LINE 58 BAS RAD ITS SIZE INCREMENTED BY ONE. I

o

>
THE PILLER ON LINZ 63 BAS HAD ITS SIZE DECREMENTED BY ONE. o

>
THE FILLER ON LINE 63 HAS BAD ITS SIZE INCREMENTED BY ONE.

e

s ,
THE FILLER ON LINE €8 HAS HAD ITS SIZE DECREMENTED BY ONE. f .

THE FILLER ON LINE 68 HAS BAD ITS SIZE INCREMENTED BY ONE.
THE PILLER ON LINEZ 73 HAS HAD ITS SIZE DECREMENTED BY ONE.
THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED BY ONE.. ;i
THE FILLER ON LINE 77 HAS BAD ITS SIZE DECREMENTED BY ONE. |
o THE PILLER ON LINE 77 HAS HAD ITS SIZE INCREMENTED BY ONE. .

i
THE FPILLER ON LINE 81 HAS BAD ITS SIZE DECREMENTED BY ONE. 1

4 >
. i THE PILLER ON LINE 81 HAS BAD ITS SIZE INCREMENTED BY ONE. D

teee STATEMENT DELETION TYPE eeee
TRERE ARE 1 MUTANTS OF THIS TYPE LEPT.
DO YOU WANT TO SERE TREN?>yes

ON LINE 106 THE STATEMENT:

GO TO 0130-CK-ADD-DRL

HAS BSEENW DELETRD.

>

eede LOGICAL OPERATOR REPLACEMENT TYPR ooee

THEIRE ARR 1 ARUTANTS OF TNIS TYPE LEPT.

DO YOU WANT TO SKEE THEN?>yes
oM LINE 102 THE STATEMENT:

If OLD-KREY > NEW-KRY
HAS BEEN CHANGED TO:

IF OLD-KEY MOT ¢ MEW-KEY

>
*e¢+ SCALAR FOR SCALAR REPLACEMENT eeee

THERE ARE 4 RMUTAUTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes
ON LINE 129 THE STATEMENT:
MOVE LINE1 TO N-LM1
HAS BEEN CHANGED TO:
MOVE NEW-REC TO N-LN1

>
ON LINE 129 THE STATEMENT:
MOVE LINEl TO N-LN)
HAS BEEN CHANGED TO:
MOVE PRNT<WORK-AREA TO N-LN1

>
ON LINE 138 THE STATEMENT:
MOVE LINE1l TO LN}
: HAS BEEN CHANGED TO:
MOVE OLD-REC TO LN}

o it m ke 3 1 am e ok Mo e e Ea s

>
ON LINE 138 THE STATEMENT:
MOVE LINEl TO LN}
HAS BEEN CHANGED TO:
MOVE PRNT-WORK-AREA TO LN

>

DO YOU WANT TO SEE THE EQUIVALENT MUTANTS?>no
WOULD YOU LIRE TO SEE THE TEST CASES?>no]
LOOP OR HALT ? >halt

i
)‘ | seee STOP

118

APPENDIX D

An FMS.1 Script on a CMS.1 Module

ro ol
e e —

B s R

NUTATION ON MUTATION

This is a report of an experience {n using the program wmutation
methodology on a production software module, namely, a subroutine in snother
sutation systeam. The subject sudroutine is NXTLIV from the Cobol pilot mutation
system (CMS.l) bdeing developed by the author at Georgis Tech. Since CMS.1 |is
written in Portran, NXTLIV was run on the pilot mutation system for Fortran
(rn:.x) which was developed at Yale University and later transferred to Georgia
Tech.

Previous experiments of this kind have taken a routine believed to
be correct, and performing mutation analysis on it to (1) increase confidence in
the module's cortectness, and (2) demonstrate that first order mutation analysis
is feasible for real programs. The current study differs primarily in that the
routine was known to contain at least onhe error. The error had resisted the
usual debugging techniques (seleactive trace, etc.) Hence FMMS.] was being used
in this instance not as a test data evaluator, but as a tool for systematic
debugging, and, perhaps Jjust as {mportantly, as s convenient test bed for a
subroutine extracted from its normal environment.

The routine NXTLIV takes as input the identifying number of s mutant
of ‘a given type, and returns the number of the next live mutant, as indicated by
bit maps of the live mutants. The bit maps are in general toe large to fit in
an internal array, so they are "paged” from a randos access disk file as needed.
Similar maps are kept of the dead sutants and the nutants judged to be
equivalent.

The original program:

SUBROUTINE NXTLIV(MTYPE,MUTNO)
C FIND THE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MTYPE
C RETURN THIS VALUE IN MUTNO.
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS OPF THAT TYPE REMAIN ALIVE
NOLIST
SINSERT ICS0S7>CPMS.COMPAR>SYSTEM.PAR
SINSERT 1CS0S7>CPMS.COMPARDMACRINE.SIZES.PAR
SINSERT ICS057>CPMS.COMPAR>PILENM.CON
SINSERT ICS057>CPMS.COMPAR>TSTDAT.COM
, srussnrxgg§os7>cpus.conpaa>nssur.con
4 L
I INTEGER MTYPE,MUTNO
§ | INTEGER I1,J,K,L,WORD,BIT
P LOGICAL ERR
CALL TIMERI](33)
ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS POR
MUTNO IS ALREADY PRESENT, UNLESS MUTNO=0
KeBPW-1
CHECX TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD
{‘ , IF(MUTNO.2Q.0)GOTO 1

0o 0a0n

!;%:O?élUTNOoR‘HSPRS).IQ.O)GOTO 24
G
1 CALL REARAN(MSPILE,LIVBUP,MSPRS,LIVPTR, ERR)
IP(ERR) CALL ABORT(‘ (MXTLIV) ERROR IN MUTANT STATUS PILR',26)
CALL REARAN(MSPILE, EQUBUP ,MSPRS, EQUPTR, ERR)
o IP(EZRR) CALL ABORT(’ (MXTLIV) ERROR IN MUTANT STATUS PILE®,)6)
‘ ‘ CALL REARAN(MSPILE,DEDBUP,NSPRS,DEDPTR, ERR)
IF(ERR) CALL ABORT(® (NXTLIV) ERROR IN MUTANT STATUS PILE',36)
- CHANGD=, FALSE.
N WORDe}

14 8ITe2
i GOTO 20

* — .
ot

] 10 WORD=MOD ((HUTHO) / (K) ,NSPRS) +]
' B 1T=MOD(MUTNO,K) +2
l 20 DO 22 J=WORD,NSPRS

d ’f LoLIVBUP(J)
[}

IP(L.NE.0)GOTO 23

P IR S S U e
,'*—b““-—v— " e —— e

. L T . -

120 b,

MUTNOSMUTNO+K
IF (MUTNO.GT.MCT)GOTO 40 ‘
GoTo 22 -
23 DO 21 I=BIT,BPW
MUTNOSMUTNO+1
IP(MUTNO.GT.MCT)GOTO 40 }
IF(AND(L,2°¢ (BPW=1)) .NE.0)GOTO 30
21 CONTINUE
BITa2
22 CONTINUE
24 IF¢.NOT.CHANGD) GOTO 25
C SAVE OLD RECORDS
CALL WRTRAN(MSFILEZ,LIVBUF,NSPRS,LIVPTR, ERR)
CALL WRTRAN(MSFILE,EQUBUF,MSFRS,EQUPTR, ERR)
CALL WRTRAN(MSFILE,DEDBUP,MSFRS,DEDPTR, ERR)
C NEED TO GET NEXT RECORDS
28 LIVPTR=LIVPTR4MSFRS
EQUPTReEQUPTR+MSFRS
DEDPTR=DEDPTR+MSFRS
GoTo 1
30 GOTO 9999
; 40 MUTNC=0
! IF(.NOT.CHANGD)GOTO 9999
¥ C SAVE OLD RECORDS
; CALL WRTRAN(MSFILE,LIVBUP,MSFRS,LIVPTR, ERR)
CALL WRTRAN(MSPILE,EQUBUP,NSFRS,EQUPTR, ERR)
CALL WRTRAN(MSFILE,DEDBUP,MSFRS,DEDPTR, ERR) :
9999 CONTINUE _ !
c CALL TIMER2 i
RETURN
END

FMS.] eccepts & limited subset of Fortran, and thus the progrl-
could not be tested directly as {t came from CMS.).
(1) PARAMETER statements are not acCepted, so the parameters
BPW (bits per word), MSFRS (mutant status file record size)
which come from the SINSERT bDlocks were systematically
replaced by convenient constants, 4 and 4.
(2) CALL statements are not supported. The random 1/0 routines
o are simulated by arrays to be read from and written to.
; The two TIMER routines sre not essential and can be ignored.

Sy

[R T v

ooy P i
' .

[

- —

[
[

Y. (3) The functions MOD and AND are not available and had to be
. simulated, 3
! (4) Type LOGICAL is not available and had to be simulated by
) INTEGER. l]
8 :
i N The modified program:
’ .
T SUBROUTINE NXTLIV(MUTNO,MCT,LIVBUP,NLB,LLS,CRANGD)
i C PIND THE NEXT LIVE MUTANT AFTER TAE NUTNOth OF TYPE NTYPE 3
C RETURN THIS VALUE IN NMUTNO.
t C A VALUE OF ZERO RETURMNED MEANS NO MUTANTS OP THAT TYPR REMAIN ALIVE
[INTEGER MUTNO, TEZMP
' INTEGER I1,J,L,WORD,BIT n

N INTEGER MCT,LIVBUP(4),LLB(4) ,NLB(4) ,CHANGD
C ASSUME THAT THE RECORD COMTAINING THE LIVE BIT NAPS POR

A C MUTNO IS ALREADY PRESENT, UNLESS MUTMO=0

; C CHECK 7O SEE IF WE ARE AT THE END OF A PRYSICAL RECORD

¥ , IP(MUTNO. EQ.0)GOTO 1

) J ccee IP(MOD(MUTNO, K*ASPRS) . £0. 0)GOTO 24

Y 1P((MUTNO/12) *1 2. £Q.MUTHO) GOTO 24 ,
j}l GOTO 10 IP

i

}

!

b DO 11} I = 3,4
111 LIVBUP(I)eNLB(I)

S

T -

—————

121

ccecl CALL REARAN(MSPILE,LIVBUF,RSPRS, LIVPTR, ERR)
ccee IF(ERR) CALL ABORT(® (NXTLIV) ERROR IN MUTANT STATUS rILe’ ,36)
¢ccc CALL REARAN(MSPILE,EQUBUP,NSFRS, EQUPTR, IRR)
ccee IP(ERR) CALL ABORT(® (NXTLIV) ERROR IN MUTANT STATUS PILE',36)
cece CALL REARAN(MSPILE,DEDBUF,MSPRS,DEDPTR, IRR)
ccee IF(ERR} CALL ABORT(® (NXTLIV) ERROR IN MUTANT STATUS PILE',36)
ccee CHANGD=, FALSE.

CRANGD=0

WORD=}

BIT=2

GOTO 20

cccClo WORD=MOD((MUTNO) / (K) ,MSFRS) +]
10 WORDs ((MUTNO/3) =4® ((MUTNO/3) /4)) + 1
ccec BIT=MOD(MUTNO,K) +2

BITsMUTNO-3% (MUTNO/3) + 2
20 DO 22 J=WORD, 4

S LeLIVBUF(J)

IP(L.NE.0)GOTO 23

MUTNO=MUTNO+3

IF (MUTNO.GT.MCT)GOTO 40

GOTO 22
23 DO 21 1=BIT,4

MUTNO=MUTNO+1

IF(MUTNO.GT.MCT)GOTO 40
ccce IP(AND(L,2**(BPW-1)) .NE.0)GOTO 30

TEMP=L/(2°*(4-1))

1F(TEMP.NE. (TEMP/2) *2) GOTO 30
21 CONTINUE

BIT=2
22 CONTINUE
cccc24 IP(.NOT.CHRANGD)GOTO 25
24 IF(CHANGD.EQ.0)GOTO 25
C SAVE OLD RECORDS

ccce CALL WRTRAN(MSPILE,LIVBUF,MSPRS,LIVPTR, ERR)

ccce CALL WRTRAN(MSFPILE,ZQUBUF,MSFRS,EQUPTR, ERR)

ccce CALL WRTRAN(MSPILE,DEDBUF,MSFRS,DEDPTR,ERR)
DO 241 I=}1,4

241 LLB(1)sLIVBUF(I)
C NEED TO GET NEXT RECCRDS
ccccas LIVPTReLIVPTR+MSFRS

ccce EQUPTReEQUPTR+MSPFRS
ccce DEDPTRsDEDPTR+MSFRS
cccc GOTO 1

28 GOTO 1

30 GOTO 9999

40 MUTNO=0

cece 1P(.NOT.CHANGD)GOTO 9999
1P(CHANGD.EQ.0) GOTO 9999

C SAVE OLD RECORDS

ccce CALL WRTRAN(MSPILE,LIVBUP,MSPRS,LIVPTR, ERR)

ccce CALL WRTRAN(MSPILEZ,EQUBUP, MSPRS,EQUPTR, ERR)

ccce 0o 25?L§ YR:RAI(HS'ILI.DID.Uf.HS'RS.Dlﬂ?fﬁ.ERR)
.l,

291 LLB(I)=LIVBUP(I)
9999 CONTINUEZ

RETURN

END

A trace of the initial FMS.1 run on this routine appears below,
with commentary in lower case.

OR, SEG RNOPINS
PAEZ-RUN PPASE

T N Ny LS 3ipmns e

ALL INPUT MUST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NAME
NXTLIV

DO YOU WANT TO PURGE WORKING PILES
FOR A FRESH START?

TYPE A YES OR NO ¢eee
YES

CATEGORIZE FORMAL PARARETER MUTNO
10
CATEGORIZE FORMAL PARAMETER MCT

N

CATEGORIZE PFORMAL PARA&tTlR LIvVeur
10 H
ICATEGORIZB FORMAL PARAMETER NLB

N :

+

CATEGORIZE PORMAL PARAMETER LLB

1o -

CATEGORIZE FORMAL PARAMETER CHANGD

10

IS MUTANT CORRECTNESS DEPENDENT ON A PREDICATE SUBROUTINE?
TYPE A YES OR NO wees
NO

HOW MANY TEST CASES ARE TO BE SPECIPIED?
1

SPECIFY TEST CASE 1

ENTER VALUES FOR

MUTNO ,MCT +CHANGD,
oé&cC

1

a value of "0° for mutno on input means that this is a new mutant type, and a
new record is required. MCT is the total number of autants of the current type.

770 OENT!R 4 VALUES FOR ARRAY LIvVBsur
ENTER 4 VALUES TOR ARRAY NLB
ococe

NLB is the next 1live duffer. In this case is should be transferred to LIVBUF
for use immediately.
ENTER 4 VALUES FOR ARRAY LiLB
0000
TEST CASE NUMBER 1
PARMETERS ON INPUT
MUTNO - 0

8 minor bug {n the GCeorgia Tech version of FNS.] prevents the input on the first
testcase from being echoed.
PARAMETERS ON OUTPUT

MUTNO = 0

LIVBUF ()= 0
LIVBUY (2)= 0
LIVBUP (3)e 0
LIVBUF (4)e 0
LLs (1)= 0
LLD (2= 0
LLB (3= 0
LLD t 4)= (]
CHANGD =]

THE RAW PROGRAM TOOK 41 STEPS TO EXECUTE THNIS TEST CASE
HIT RETURN TO CONTINUE

BuUtno=0 on output mesns that the end of the live mutant map for this type has
been reached,

——— —————
It K3
i [PPSR

[N

[S——

e S, T i 4 s 3 1

PLEASE VERIFY TRAT DATA IS CORRECT
TYPE A YES OR NO eede
YES
WHAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ?
PAN

this stands for “path analysis®. The mutent operator replaces statements with a
<trap> statement which always causes the autent to fail 1f the statement is

executed.

WHAT NEW TYPES OF MUTANTS ARE TO BE CONSIDERED ?
NONE
H MUTATION PHASE
. POST RUN PHASE - '
NUMBER OF TEST CASES o 1 NUMBER OP NMUTANTS = 4
NUMBER OF LIVE MUTANTS = 23 PCT OF ELIMINATED MUTANTS = 47.73

MUTANT TYPES AND LIVE MUTANTS PROPILES
TYPE MUT LIVE* TYPE MUT LIVE® TYRE MUT LIVE® TYPE MUT LIVE®
PAN &4 23¢

MUTANT ELIMINATION METHOD PROPILE
] METHOD COUNT* METHOD COUNT* METHOD COUNT® METHOD COUNT®

- -

TIMED-QUT 0* REF UNDVAR 0* SUBSCR RNG 0* ZERO DIV o*
ARTH FAULT 0® RDONLY VAR 0* TRAP STMT. 21* WRONG ANS 0o*
EQUIV Oe

POST RUN RESULTS
MUTANTS

MUTANT NUMBER 2
16 IP((MUTNO/12) *12.EQ.MUTNO)GOTO 24
STATEMENT HAS BEEN CHANGED TO
16 TRAP

HIT RETURN TQ CONTINUE, TYPE STOP TO PINISH
TYPE EQUIV TO KILL MUTANT

MUTANT NUMBER 3
I 17 GoTo 10
ot STATENENT MAS BEEN CHANGED TO
' 17 TRAP
HIT RETURN TO CONTINUE, TYPE STOP TO PINISH
| TYPE EQUIV TO KILL MUTANT

MUTANT NUMBER 10

“ , 32 10 _ WORDs ((WUTNO/3)-4* ((RUTNO/3)/4)) + 1

STATEXENT HAS BREM CBANGED TO
Z - : 32 10 TRAP
1 HIT RETURN TO CONTINUE, TYPE STOP TO PINISH
! ! } TYPE EQUIV TO KILL MUTANT

NUTANT NUMBER 1

! k[| BIT=MUTNO~3® (NUTNO/I} + 2
C STATENENT HAS BEEN CHANGED TO
34 TRAP
NIT RETURN TO CONTINUE, TYPE STOP TO PINISH
TYPE EQUIV TO RILL MUTANT
i STOP
TYPE NEXT COMMAND
Loop
PRE-RUN PHASE
[SAVING OUTPUT PILE ON BAROUT

e -

Ny
. SodBN
N A N — - . —— g

B O e SO E NP UETTSOTONS & DU

HIT RETURN TO CONTINUR
HOW MANY NEW TEST CASES FOR THIS RUN? I
1

SPECIFY TEST CASE 2

ENTER VALUES FOR

MUTNO ,MCT +CHANGD,

160

ENTER 4 VALUES FOR ARRAY LIVBUP
7700

ENTER 4 VALUES FOR ARRAY NLB

(Yoo

Q
(-]
Q
o
Bowess: |

ENTER 4 VALUES FOR ARRAY LLSB

TEST CASE NUMBER 2
] PARAMETERS ON INPUT

[N

: MUTNO = 1
y [{o0 o - 6
; LIVBUF (1)= 7
{ LIVBUF (2)= ? .
. LIVBUF (3)= 0 j
- LIVBUF (4)= 0 i
NLB { e 0
j NLB (2)= 0]
: NLB (3= 0)
; NLB { e 0 :
: LLe (= 0
LLB (2)= 0
‘ LLB (3= 0
! HIT RETURN TO CONTINUE i
LLB (4= 0
CHANGD = 0
PARAMETERS ON OUTPUT
MUTNO = 2
LIVBUF ()=)
LIVBUF (2)= 7
LIVBUF (3)= 0
LIVBUF (&)= 0
LLs ()= 0
p LLs (2)= 0
; LLs (e 0
LLs ()= 0
CHANGD = 0
THE RAW PROGRAM TOOK 16 STEPS TO EXECUTE THIS TEST CASE
HIT RETURN TO CONTINUE 5
. PLEASZ VERIPY THAT DATA IS CORRECT
t TYPE A YES OR NO *eee
YeS "
‘ WHAT NEW TYPES OF MUTANTS ARE TO BEZ CONSIDERED ? J
. NONE ‘
b cstvx:w PREVIOUS RUN RESULTS
H
| MUTATION PHASE [}
d POST RUN PHASE i
NUMBER OF TEST CASES = 2 NUMBER OF MUTANTS = 4
| NUMBER OF LIVE MUTANTS e 11 PCT OF ELIMINATED MUTANTS = 75.00

MUTANT TYPES AND LIVE MUTANTS PROPILES
TYPE MUT LIVE® TYPE MUT LIVE® TYPE MUT LIVE® TYPE MUT LIVE®
PAN 44 11e

MUTANT ELIMINATION METHOD PROPILE

125

METROD COUNT® METHOD COUNT® METHOD COUNT* METHOD COUNTe

TIMED-OUT 0* REF UNDVAR 0® SUBSCR RNG 0°* ZERO DIV 0*
ARTH FAULT O* RDONLY VAR 0®* TRAP STMT 33* WRONG ANS 0e
EQulv [t

POST RUN RESULTS

Loop

PRE~-RUN PHASE
SAVING OUTPUT FILE ON BAKOUT
HIT RETURN TO CONTINUE

ROW MANY NEW TEST CASES FOR THIS RUN?

1
SPECIPY TEST CASE 3

ENTER VALUES POR

MUTNO ,MCT ,CHANGD, ,
10 20 1
1zgtzao 4 VALUES FOR ARRAY LIVBUP

0

7zursn° 4 VALUES FOR ARRAY NLB

70

ENTER 4 VALUES POR ARRAY LLB
99 99 99 99

TEST CASE NUMBER 3

PARAMETERS ON INPUT

MUTNO = 10

MCT - 20
LIVBUF (1l)s= 1
LIVBUF (2)= 3
LIVBUF (13J)= 0
LIVBUF (4)= 0
NLD { 1)= 7
NLB (2)= ?
NLD (= 0
NLB { 4)= 0
LLB (1)= 99
LLB { 2)= 99
LLB ({)= 99 /
RIT RETURN TO CONTINUE
LLse (4)» 99
CHANGD = 1
PARAMETERS ON OUTPUT
MUTNO = 14
LIVBUF (1)= ?
LIVBUP (2)= 7
LIVBUP ()= 0
LIveur (d)s= 0
LLB (1)= 1
LLB { 2)= 3
LLB { 3)= 0
LLe (d)e 0
CBANGD = 0

THE RAW PROGRAM TOOK S6 STEPS TO EXECUTE THIS TEST CASE
HIT RETURN TO CONTINUE

An error has been detected. The correct output for MUTNO is 1) instead of 14.
The error resulted from choosing @& starting point in the middle of a word of
zero bits. NXTLIV ordinarily loops through the bits of esch word 1looking for
the next ®1° bit, but as an efficiency measure, a whole word is compared to sero
before entering the loop. If all bits are off, MUTNO is incremented by the word
length, and the next word is accessed. The Correct algorithm would increment
MUTNO only by the number of bits left to be exsmined in the word. The only wey
this could make a difference in the original program is for NXTLIV to be called

= e

fn suc
the sy

This s
common

the te

h & way as to stop at & *1°® bit in the middle of the word, and then have
stem turn off the bit by reason of mutant fallure of equivalence (outside
NXTLIV), and then have NXTLIV called again for the next mutant to be considered.

itvation is rare enough to frustrate haphazard debugging attempts, but
enough to cause irritation in a production-sized run.
The correction is to replace
MUTNO = MUTNO + 3
énufuo = MUTNO ¢+ K in the original)
Y
MUTNO « MUTNO ¢+ (3-(BIT-2))
(MUTNO = MUTNO + (K-(BIT-2)) in the original).
After correcting this error, the program was re-entered to FMS.1 and
sting cycle started over.
OK, SEG RUN>PIMS

PRE-RUN PHASE

ALL I
ENTER
NXTLIV
DO YO
FOR A
TYPE

'YES

NPUT MUST BE IN UPPER CASE
THE RAW PROGRAM FILE NAME

U WANT TO PURGE WORKING FILES
FRESH START?
A YES OR NO hdhdd

CATEGORIZE FORMAL PARAMETER MUTNO
10

ete.

HOW M
1
SPEC?
ENTER
MUTNO
05

and so

ANY TEST CASES ARE TO BE SPECIFIED?
FY TEST CASE 1
VALUES FOR

+MCT + CHANGD,

fourth. Test cases were entered and executed correctly until all of the

path analysis mutants were eliminated.

POST RUN PHASE
NUMBER OF TEST CASES = 8 NUMBER OF MUTANTS = 44
NUMBER COF LIVE MUTANTS = 0 PCT OF ELIMINATED MUTANTS = 100.00

MUTANT TYPES AND LIVE MUTANTS PROPILES
TYPE MUT LIVE®* TYPE MUT LIVE* TYPE MUT LIVE®* TYPE MUT LIVE®

PAN

44 o

MUTANT ELIMINATION METHOD PROPILE

. METHO

D COUNT* METHOD COUNT®* METHOD COUNT® METHOD COUNT®

TIMED-OUT 0* REF UNDVAR 0* SUBSCR RNG 0¢ ZERO DIV o*

ARTH

FAULT 0* RDONLY VAR 0®* TRAP STMT 44* WRONG ANS " 1d

EQuIV (1

There
Some X

POST
Loor
PRE~
SAVIN

is no claim mede that this number of test cases is an sny way ninimal.
illed only one mutant,

RUN RESULTS

RUN PHASE
G OUTPUT FILE ON BAKOUT

HIT RETURN TO CONTINUE

HOW MANY NEW TEST CASES POR THIS RUN?

0

WHAT NEW TYPES OP MUTANTS AREC TO BE CONSIDERED ?

SELECT

PR

[

o)

oevi 4
. B

o= = EEm

X

——

- .
.

-

-~ o AT

e
- ——
- ‘J .

-,

s,

.~

.

——

. e

L

-

ey

~ &
'
.~

.

S el e et a % s n B o s

FOR EACH CHOICE, TYPES YES, NG OR PI'IISH

YES
NO
YES
NO
NO
NO
YES
NO
YES
NO
NO
NO
NO
YES
YES
NO
NO
NO
YES
NO
NO
NO
YES
YES

ARRAY LIMIT DEPAUL‘I' I'ISBQTIOI
2-DIN ARRAY LIMIT PERMUTATION
CONSTANT REPLACEMENT

SCALAR VARIABLE REPLACEMENT
SCALAR VAR FOR CONSTANT REPLMT
CONSTANT POR SCALAR VAR REPLMT
COMPARASLE ARRAY NAME REPLM?Y

*

CONST FOR ARRAY REF REPLACENNT
SCALAR VAR FOR ARR REP REPLMT
ARRAY REF FOR CONST REPLACEMNT
ARR REF POR SCALAR VAR REPLMT
2-DIM ARRAY REF INDEX PERMUTE
SCALAR VAR INIT INSERTION

*

ARITHMETIC OPERATOR REPLACEMNT
RELATIONAL OPERATOR REPLACEMNT

LOGICAL CONNECTOR REPLACEMENT

ARITHMETIC PRECEDENCE PERMUTE
LOGICAL PRECEDENCE PERMUTATION

GOTO LABEL REPLACEMENT
CONTINUE STATENENT INSERTION
CONTINUE STATENENT DELETION
INNER DO~LOOP DECOUPLING
DO~LOOP INDEX ALTERATION
RETURN STATEMENT INSERTION

»

T:!S! MUTANT TYPES WERE ALREADY ONM:
WHAT NEW TYPES OF MUTANTS ARE TO BEZ COMSIDERED ?

NONE

REVIEW PREVIOUS RUM RRSULTS
Go

MUTATION PHASE

POST RUN PHUASE

NUMBER OF TEST CASES »
NUMBEZR OF LIVE NUTANTS »

MUTANT TYPES AWD LIVE MUTANTS PROPILES
TYPE MUT LI

ALD
ROR

NUMBER OF MUTANTS = 99
28 PCT OF ELIMINATED MUTANTS =

VE® TYPE MUT LIVE® TYPE MUT LIVE® TYPE MUT LIVEe
10* GLR 108

ottt o i+

i L

———

Xl e

T e o SR e 3 i e ST M M A U~ o s St 0 AT -
e WAL e e ke e

et

MUTANT ELIMINATION METHOD PROPILE
METHOD COUNT®* METHOD COUNT®* METHOD COUNT® METHOD COUNT®

TIMED-OUT 31* REF UNDVAR 16® SUBSCR RNG 19* 2ERO DIV se
ARTH FAULT 0* RDONLY VAR 0®* TRAP STNT 44* WRONG ANS 259¢
EQUIV 0
POST RUN RESULTS

HALT
later...

OK, SEG RUN>PIMS

PRE-RUN PHASE
ALL INPUT MUST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NAME
NXTLIV
DO YOU WANT TO PURGE WORKIMG FILES
FOR A FRESH START?
TYPE A YES OR NO ehee
NO

after entering several test cases, the situation was as shown:
MUTATION PHASE
POST RUN PHASE
NUMBER OF TEST CASES = 11
NUMBER OF LIVE MUTANTS =

NUNMBER OF MUTANTS = 399
9 PCT OF ELIMINATED MUTANTS « 97.74

MUTANT TYPES AND LIVE MUTANTS PROPILES

TYPE MUT LIVE® TYPE MUT LIVE®* TYPE NMUT LIVE® TYPEZ MUT LIVE*
ALD 3 0* CAR 14 0* SPA 63 0* AOR 84 0*
ROR 40 l* GLR 108 7* PAN 44 0® RSR 43 1e

MUTANT ELIMINATION METHOD PROPILE
METHOD COUNT® METHOD COUNT*® METHOD COUNT® METHOD COUNT*

TIMED-OUT 21* REF UNDVAR 16* SUBSCR RNG 20*¢ ZERQ DIV 5¢
ARTH FAULT 0* RDONLY VAR 0®* TRAP STMT 44° WRONG ANS 262¢
EQULIV 12+

POST RUN RESULTS
Loce

PRE~RUN PHASE
SAVING OUTPUT FILE ON BAKOUT
HIT RETURN TO CONTINUE

It was decided to leave those nine alone, and consider all autants,
the multitude of substitution mutants.

HOW MANY NEW TEST CASES FOR THIS RUM?
0

WHAT NEW TYPES OF MUTANTS ARE TC BE COMSIDERED ?
ALL ’

TRAESE MUTANT TYPES WERE ALREADY OM:

ALD CRP CAR SFA AOR ROR GLR PAM DIA RSRA

REVIEW PREVIOUS RUW RESULTS
GO

MUTATION PHASE

POST RUN PHASE

NUMBER OF TEST CASES = 11 NUMBER OF MUTANTS = 1514
NUMBER OF LIVE MUTANTS o SO PCT OF ELIMINATED MUTANTS = 96.70

MUTANT TYPES AND LIVE MUTANTS PROPILES

TYPE MUT LIVE® TYPE MUT LIVE® TYPE MUT LIVE® TYPE RNUT L1IVE®
ALD 3 0* SVR 368 14° SPC 106 120 CPFS 190 e
CAR 14 0* CPA 24 0* SPA 6) 0* APC 104 1*

128

including

t Z

|
i
|

~—

oy

KAy SR a3 5 o e,

AFS 128 4* AOR 84 0* ROR 40 l® GLR 108 T*
PAN 44 0* Cs1 3 3* CSp 2 1¢* RSR &) 1e

MUTANT ELIMINATION METHOD PROPILE

METHOD COUNT® METHOD COUNT® METHOD COUNT® METHOD COUNT®
TIMED-OUT 45* REF UNDVAR 481¢ SUBSCR RNG 98¢ ZERO DIV 2%
ARTH FAULT 0* RDONLY VAR 0° TRAP STMT 44* WRONG ANS 759¢
EQUIV 12¢

POST RUN RESULTS

A cycle of (1) look at a few live mutants
(2) genecate test data to kill those mutants
- (3) execute mutants on test data
(4) look at more mutants

was followed several times until the sutant was encountered

MUTANT NUMBER 689
45 BITa2
STATEMENT HAS BEEN CHANGED TO
45 I=2

The following data was entared to try to eliminate this mutant. It
involved starting in the middle of a word, and having to go into the next word
to find the next on bit.

SPECIFY TEST CASE 15
ENTER VALUES FOR
MUTNO ,MCT +CHANGD,

5200
ENTER 4 VALUES FOR ARRAY LIVBUP
0010
ENTER 4 VALUES FOR ARRAY NLB : :
1111
ENTER 4 VALUES FOR ARRAY LLB
99 99 99 99

TEST CASE NUMBER 15
PARAMETERS ON INPUT

MUTNO = S

MCT - 20
LIVBUF (1l)= 0
LIVBUF (2)= 0
LIVBUF (3)e 1
LIVBUF (4)= 0
NLB (1l)= 1 1
NLB (2)e b
NLB (3= 1
NLB (4)= 1
LLs (e 99
LLd { 2)= 99
LLS (3)= 99
HIT RETURN TO CONTINUE
LLe { 4)»= 99
CHANGD = 0
PARAMETERS ON OUTPUT
MUTNO = 7
LIveur (1)= 0
LIVBUFR (2)e 0
LIVBUP (3)= 1
LIveur (4)e 0
LLS ()= 99

24 . . Te
o T I . L .

T ey,

-

LLB { 2)= 99
LLe (3)= 99
LLB { &)= 99
CHANGD = 0

THE RAW PROGRAM TOOK 23 STEPS TO EXECUTE THIS TEST CASE
HIT RETURN TO CONTINUE

PLEASE VERIPFPY THAT DATA IS CORRECT
TYPE A YES OR NO wneee
KILL

ABCRTING RUN

teee STOP 77777

The answer {s wrong. Another error in the program has deen found, Main it s
telated to the test for an entire word of zeros. If we start in the middle of 2
word of 2zeros, the BIT pointer {s not being reset to 2 to begin searching the
next word. The correction that is needed {s to replace

BIT=2
22 CONTINUE
by
22 BIT=2

It is interesting to note that another mutant further down in the 1list does
exactly that -- remove the continue statement at the end of a DO loop and put
the label on the next-to-last statement. The error was discovered before |t
absolutely had to be, but it would have been discovered eventually in any case.

OK, SEG RUN>PIMS
PRE-RUN PHASE
ALL INPUT MUST BE IN UPPER CASE
ENTER THE RAW PROGRAM FILE NAME
NXTLIV
DO YOU WANT TO PURGE WORKING FILES
POR A FRESH START?
TYPE A YES OR NO tond
YES
CATEGORIZE FORMAL PARAMETER MUTNO
10

CATEGORIZE PORMAL PARAMETER MCT
IN

CATEGORIZE PORMAL PARAMETER LIVBUF
10

CATEGORIZE PORMAL PARAMETER NLB

N

CATEGORIZE FORMAL PARAMETER LLD
10

CATEGORIZE PORMAL PARAMETER CHANGD

10

18 MUTANT CORRECTNESS DEPENDENT ON A PREDICATE SUBROUTINE?
TYPE A YES OR NO veae

NO

HOW MANY TEST CASES ARE TO BE SPECIPIED?
15

SPECIFY TEST CASE 1

ENTER VALUES FOR

MUTNO ,MCT ,CHANGD,
PILE TESTNXT

e

I

=] =3 =

131

The 15 test cases already generated were run against all mutants on the Jlatest
version of the program. These test cases had been saved on a file rather than

entered by hand during the run.

NUTATION PHASE
POST RUN PHASE
WURBER OF TEST CASES = 1% NUNBER OF MUTANTS = 13580

NUMBER OF LIVE MUTANTS = 52 PCT OF ELIMINATED MUTANTS = 96.7)

RUTANT TYPES AND LIVE MUTANTS PROFILES :

TYPE WMUT LIVE* TYPE MUT LIVE® TYPE MUT LIVE* TYPE MUT LIVE®
ALD 3 0o* CRP 68 5S¢ SVR 368 4* SPC 306 10°
Ccrs 180 6* CAR 14 0* CPA 24 0* SFA 63 0*
APC 104 0* AFS 128 2* AOR 84 0* ROR 40O 8e
GLR 108 9% PAN 43 0* Cst 4 3* Csp 1 le

RSR 42 44

MUTANT ELIMINATION METHOD PROFILE

METHOD COUNT* METHOD COUNT* METHOD COUNT® METHOD COUNT®
TIMED-OUT 47* REP UNDVAR 4¢83* SUBSCR RNG 111*¢ ZEROC DIV 26°
ARTH FAULT 0* RDONLY VAR 0% TRAP STMT 43° WRONG ANS 018¢
ZQulv 0

POST RUN RESULTS

The cycle of killing & few mutants at a2 time was entered again, and some mutants
were judged to be equivalent along the way. One principal source of equivalent
mutants was the troublesome test for a word of zeros. Its only purpose is to
save the effort of looking through the word bit by bit. If the condition in the
test is replace by any condition that is {dentically .TRUE., the program runs a
bit longer sometimes, but gets the ssme rtesult. An example of this is:

MUTANT NUMBER 8113
W IF(L.NE.0)GOTO 23
STATEMENT HAS BEEN CHANGED T0
34 IF(12.NE.D) GOTO 23

Another source of equivalent nutants is the occurrence of extra ladels. Por
example it is easy to see that GCOTO 2% can always de replaced with GOTO 1. At
some statements in the program a variable is guaranteed to have a particular
value. 7This generstes equivalent msutants such as

MUTANT NUMBER 694
52 DO 243 I=},4
STATEMENT HAS BEEN CHANGED 7O
s$2 DO 241 I=CHANGD, 4

In 8ll, 37 mutants were judged to be equivalent, and the rest were eliminated by

test cases on which the program performed corcrectly.
One equivalent sutant actuslly turned out to be an faprovement

(albeit & slight one) on the originsl prograa.

MUTANT NUMBER 1382

3¢ 1P (MUTNO.GT.MCT)GOTO 40
STATEMENT NAS BEEN CHNANGED TO
k] IP{ MUTNO.GE.NCT) GOTO 40

MUTANT STATUS AFTER THIS RUM
NUMBER OF TEST CASES » 24 NUNBER OF MUTANTS = 1580

NUMBER OF LIVE MUTANTS = 0 PCT OF ELININATED NUTANTS = 100.00

MUTANT TYPES AND LIVE MUTANTS PROPILES

TYPR NUT LIVE®* TYPE MUT LIVE® TYPE MUT LIVE® TYPE NUT LIVE®
ALD 3 0* CRP 68 0* SVR 360 Q® SPC 306 o*
crPs 100 0* CAR 14 0* CPA 24 0* SPA 63 0*
AFC 104 0* AFS 128 0®* AOR 84 0®* ROR 40 0*
GLR 108 0* PAN &) 0® Cst 4 0* CSD 1 0*
RSR 42 Q¢

MUTANT ELIMINATION METHOD PROFILE

METHOD COUNT® METHOD COUNT® METHOD COUMNT® METHOD COUNT*
TIMED-OUT S1® REF UNDVAR 483® SUBSCR RNG 113* ZEIRO DIV 26¢
ARTH FAULT 0°® RDONLY VAR 0° TRAP STMT 4J°® WRONG ANS 827¢

EQUIV 37
POST RUN RESULTS
HALT

Previous experience has never found a pregram that has pesses mutant analyals
that still contained an error. The current progras will be a good test of the
generality of that experience, since this routine is expected to continue in
service for some time. It should be noted that not all of the original routine
has been tested by mutation, and no clalms are made for the untested portions.
But if mutation {s valid, the central 1logic of the routine should now be

correct.

——

133
- |
|
APPENDIX E
|
Statistical Background
b []
.
|
§
:' 1

PR R S,

- —

® m—
"'A'-'—.u

s

b I S

134

STATISTICAL BACKGROUND

Analysis of Variance

In many experimental settings, several factors are
thought te have some possible relationship to a response

variable whick can be measured. Generally a linear model is

used.
X = E + aA + bB + ...
Wrere X = the measured response variable
A = a controlled factor

'a = an unknown constant

B = another factor
b = B's constant
etc.

and E = an "error®™ term; a random variable for variation
not accounted for by any of the controlled factors. Some of

the factors being considered may be interactions ot other

factors.

—————

P—
[.

r— ova

1430

Analysis of varlance is a test of each of tte
Lypotheses:

a=0, b=0, ...
Suppose A is controlled to take on just two values, say O
and 1, and we want to test the hypothesis a=0 (i.e. A hLas
no effect), Let SO be the average value of X for all
observations with A=0, and S1 be the average for A=l,
Because of the uncontrolled random variation E, we would not
expect SO to be equal to Sl, even if A had no real effect on
X. What we need to do ils first estimate the variation due
to E, and compare [S0-Sl| to the difference we would thus
expect from pure error, We can estimate the variation of E
by making more than one observation of X at each combination
ot values of the controlled variables. These mwmultiple
‘obgervations are called replicates. If we assume that the
error term is normally distributed, then we can use thre
tabled vaiues of the F-distribution to decide whetker or not
a difference between SO0 and Sl is large enough that it is
unlikely that 1t 1is the result of pure chance. Extensions
to more compiicated cases are not difficule. Suppose, for
exarple, that B 1is controlled to ten values (say
0,1,2,..+,9). Let TL be the average of thke observations
with B=i, Then we measure the variation possibiy due to 8
by the sample variance of the Ti's, by a sum-ot-squares
computation. We can compare that variation to the variation

from E. If the variation among the Ti's is much larger than

that predicted from pure error, then we conclude that B Las ;
a significant effect. Again we use values of the !
F-distribution to determine the decision criteria. The

significance level of tke decision criterion is the

probability of concluding that the effect is significant, if §§

indeed it s not. An excellent discussion of analysis of

JEseSUR

variance, along with all necessary computational formulas ff
and tables, may be found in {23], or any other good handbook

of experimetal statistics.

e

i g et

ey iR - .

e e S e, G AT AR € Rt

137

Confidence Intervals

In experimental statistics we often know the type of
distribution from whick we are sampling, but we want to
determine some of its controlling parameters. For example,
we often know (or assume) that we have a normal (Gaussian)
distribution, but do not know its mean or varianbe. We tren

have a two-parameter family, and we wishk to establisk the

parameters. For simplicity, consider a one-parameter family
£(p). We sample from £ by making several observations of
objects in the distribution, and estimate p from tte
observations. The mathematical éotm of the‘estimate depends
on the form of the family, If £ were a class of norral
distributions all witk variances=l, and p were the mean, then
the best estimate of p would be the arithmetic mean ot the
observations. If £ were the class of uniform distributions
on the interval (p,1], then a good estimate for p would be
the minimcum observation. In any case, once we Lave tle
estimate, we like to ask ourselves how accurate the estimate
is. The questioﬁ {s often answered with a confidernce
fnterval, If we sample from £ and estimate p=p, we like to
also say "there is a 953 probability that p0 < p < pl°,
wrere p0 and pl are also computed from the observations.
The interpretation of this statement Ls important. p is not
a random variable; either it is in the interval or {t |is
not. The random variables are p0 and pl. A more accurate

statement would be “"experimental procedure S produced thre

T

~ _‘!*'. -

interval (pO,pl], and there is a 95% probability that S will

produce an interval containing the true value of p".
The family of distributions wunderlying the coupling

experiments is the binomial distribution.

n! k n~k
P (k) = ==wm==- P (1-p)
D k! (n=-k) !
i1f k {s an integer between 0 and n

P (k)=0 otherwise.
P

HYere n is the sample size, k is the number of successes in
the sarmple, and p is the probability of success on any one
observation. ("Success" here can mean anything we want.,)
In our experiments, n is on the order of 10,000 to 50,900,
and p is trhe fraction of all complex errors of a given type
that would not be equivalent or eliminated by the test data
provided, and k is the number of complex errors in the
sample that are not equivalent or eliminated.

Let p0 be the value (found by iteration) suck that

z: P (L) = 0,975
po
i=0

k=1 k=1
P(pogp) = P(EL P (1) > Zp
i=0 p0 i=0 p

e

———
fe o

S et B 2B <l MA@ LT < i e, v

ku
=2 P (1)
i=0 P
Where ku is thka largest integer such that
ku=1

2= P (1) < 0.975 -
i=0 P

So P(p0 < p) 2 0.975, By an analogous argument, P(pl > p) >

- pmeccmwr s

0.975. Our 95% confidence interval is thus (pO,pl]. j

Yo oac e T S S KL T

140 t

APPENDIX F

Prograr Listings

:

{

)
! i
N

3

3

s

e
- - N

- —

ot ot ot 3t D D DO N
W~

[
-~

NN NN -2 e b b e
HLWNLOVBIRAW

wNNNON
(=BT N RSN NV}

[N
N

o W)W W W WL
OVWBINTNL W

T EX XXX ¥ W ¥ ¥ 1
OB IANE WN™

(L AV ']
W >

w
£

[- 3 XL AT XV
CWVWB®INrW

(-]
[

PROGRAM 1

IDENTIPICATION DIVISION.
PROGRAM-ID. POQAACA.
AUTHOR. CPT R W MOREHEAD.
INSTALLATION. HQS USACSC.
DATE-WRITTEN. OCT 1973.
REMARKS. .
THIS PROGRAM PRINTS QUT A LIST OF CHANGES IN THE ETF.
ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A
LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS
FOR HO USE ONLY AND HAS NO APPLICATION IN THE FPIELD.
L T T P)
MODIPIED FOR TESTING UNDER CPMS BY ALLEN ACREE
JuLy, 1979.
ENVIRONMENT DIVISION.
CONPIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OLD-ETF ASSIGN INPUTA.
SELECT NEW-ETP ASSIGN INPUTS.
SELECT PRNTR ASSIGN TO OUTPUTY.
DATA DIVISION,
FILE SECTION.
FD OLD-ETF
RECORD CONTAINS 20 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD 1S OLD-REC.
01 OLD-REC.
03 FILLER PIC X.
03 OLD-KEY PIC X(12).
03 FILLER PIC X(57).
FD NEW-ETPF
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD 1S NEW=-REC.
03 NEW-REC.
03 FILLER PIC X.
03 NEW-KEY PIC X(12).
03 FILLER PIC X(67).
FD PRNTR
RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRNT-LINE.
01 PRNT-LINE . PIC X(40).
WORKING-STORAGE SECTION.
01 PRNT-WORK=-AREA.
03 LINE) PIC X(30).
03 LInZ2 PIC X(30).
03 LINE) PIC X(20).
01 PRNT=-OUT-OLD.
03 WS-LN-1,
05 PFILLER PIC X VALUE SPACE.
05 PILLER PIC XXXX VALUR ‘'O ‘.
0S LN} PIC X(30).
0S PILLER PIC XXX VALUB SPACES.
03 WS-LN-2.
0S5 PILLER PIC X VALUE SPACE.
05 PILLER PIC XXXX VALUE 'L ‘. j

PR

)

&

~N
\‘.L.!.x\

125 0180-200.

&2 05 LN2 PIC X{)0).
63 05 FILLER PIC XXX VALUE SPACES.
64 03 WS-LN-3. '
65 05 FILLER PIC X VALUE SPACE.
66 05 FILLER PIC XXXX VALUE ‘D °.
67 05 LN) PIC X(20).
68 05 FPILLER PIC XXX VALUE SPACE.
69 01 PRNT-NEW-OUT.
70 03 NEW-LN-1.)
71 05 FILLER PIC XXXXX VALUE * N °.
72 05 N-LN) PIC X(30). .
73 05 FILLER PIC XXX VALUE SPACE.
74 03 NEW-LN=2,
, 75 05 FILLER PIC XXXXX VALUE * E *.
: ‘ 76 0S5 N-LN2 PIC X(30).
v 7”7 05 FILLER PIC XXX VALUE SPACES.
' 7 03 NEW-LN-3. .
79 05 FILLER PIC XXXXX VALUE * W ',
80 05 N-LN3 PIC X{20).
81 05 FILLER PIC XXX VALUE SPACES.
82 PROCEDURE DIVISION.
83 0100~0PENS. ..
\ 84 OPEN INPUT OLD-ETF NEW-ETY. .
; 85 OPEN OUTPUT PRNTR. .
} 86 0110-0LD-READ. .
87 READ OLD-ETF AT END GO TO 0160-OLD-EOF.
83 0120-NEW-READ.
89 READ NEW-ETF AT END GO TO 0170-NEW-EOF.
90 0130-COMPARES,
91 IF OLD-KEY = NEW-KEY
92 NEXT SENTENCE
93 ELSE GO TO 0140-CK-ADD-DEL.
94 IF OLD-REC = NEW-REC
95 GO TO 0110-CLD=-READ.
X 96 MOVE OLD-REC TO PRNT-WORK-AREA. -
97 PERPORM 0210~0LD-WRT THRU 0210-EXIT. .
. 98 MOVE NEW-REC TO PRNT-WORK-AREA. L}
! ’ 99 PERFORM 0200-NW- WRT THRU 0200-EXIT.
Vo 100 GO TO 0110-OLD-READ. o
d 101 0140~CK~-ADD-DEL. ’
102 IF OLD-KEY > NEW-KEY R
; 103 MOVE NEW-REC TO PRANT-WORK-AREA
; 104 PERFORM 0200-NW-WRT THRU 0200~EXIT
4 108 GO TO 0120-NEW-READ
, e 106 ELSE GO TO 0150~CK~ADD~DEL.
3 ¢ 107 0150~CX-ADD-DEL.
i 108 MOVE OLD-REC TO PRNT-WORK~AREA.
ﬁ! 109 PERPORM 0210-OLD-WRT THRU 0210-EXIT.
: b 110 READ OLD-ET? AT END
; ; ¢ 111 MOVE NEW-REC TO PRNT-WORR-AREA
g ,;j. 112 PERFORM 0200=NW-WRT THRU 0200-EXIT
r 5 i 113 GO TO 0160-OLD-ECP.
f i "V 114 GO TO 0130~-COMPARES.
. M, 11S 0160~-0LD-EOP.
% ; Y 116 READ NEW-ETP AT END GO TO 0180-20J.
p . . 117 MOVE NEW-REC TO PRNT-WORK-AREA.
i | : 118 PERPORM (0200=-NW-WRT THRU 0200~EXIT.
¥ ¥ 119 GO TO 0160-OLD-ZOP.
: ‘ 120 0170-NEW-EOF.
: * : 121 MOVE OLD~REC TO PRNT-WORK-AREA.
| {} 122 PERPORM 0210-OLD-WRT THRU 0210-EXIT.
l NI 123 READ OLD-ETP AT END GO TO 0180-£0J.
F ‘ v 124 GO TO 0170-NEW-LOP.
r- .

PRSI SV WP

L L

126

129
129
130
13
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

)

CLOSE OLD=-ETF NEW-ETP PRNTR.
STOP RUN.
0200~NW-WRT.
MOVE LINE1l TO N-LMN1.
MOVE LINE2 T0 N-LN2.
MOVE LINE3 TO W-LN3.
WRITE PRNT-LINE PROM NEW-LN-1 AFTER ADVANCING 2.
WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
WRITE PRNT-LINE PROM NEW-LN-3 AFTER ADVANCING].
0200~-EXIT. ’
EXIT.
0210-0LD=-WRT.
MOVE LINE1 TO LN1.
MOVE LINE2 TO LN2.
MOVE LINE3 TO LNJ.
WRITE PRNT-LINE FROM WS-LN-1 APTER ADVANCING 2.
WRITE PRNT-LINE FROM WS-LN-2 APTER ADVANCING 1.
WRITE PRNT-LINE FROM WS-LN-3 AFTER ADVANCING 1.

0210-EXIT.
EXIT.

~—

VR dANELEWN

IDENTIFICATION DIVISION.

PROGRAM-1ID.

PROG-1.

AUTHOR.

JAMES L. BINCHANM.

DATE-WRITTEN.

APRIL 14, 1979.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER.
OBJECT-COMPUTER.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-TRANSACTION ASSIGN TO INPUTO.

PRIME.
PRIME.

PROGRAN 2

SELECT OUTPUT-PAYMENT ASSIGN TO OUTPUTO.

DATA DIVISION.
FILE SECTION.

FD

01

FD

o1

WORKING-STORAGE SECTION.

01

01

0l

IN-TRANSACTION

RECORD CONTAINS 18 CHARACTERS,
LABEL RECORDS ARE OMITTED, .

0S5 ACCT-NUM

0S5 BILLED-AMT
05 PERCENTAGE
05 ACCT-CLASS

OUTPUT-PAYMENT

DATA RECORD IS TRANSACTION-RECORD.
TRANSACTION-RECORD.

RECORD CONTAINS 55 CHARACTERS,
LABEL RECORDS ARE OMITTED,
DATA RECCORD IS OUTPUT-RECORD.

OUTPUT-RECORD

W-TOTALS-0UTPUT-RECORD.

05 FILLER

05 NAME-OF-CLASS
05 TOTAL-CLASS-PAY
0S FILLER

W-OUTPUT-RECORD.
05 PILLER

0S W-ACCT-NUM
05 PILLER

0S5 W-BILLED-AMT
05 PILLER

0S5 W-PERCENTAGE
05 PILLER

05 W-ACCT-CLASS
05 PILLER

0S8 W-PAYMENT

TEMPORARY~-ITEMS.
0S5 TOTAL-A-PAY
0% TOTAL-X-~PAY
0S5 TOTAL-M-PAY
05 TOTAL-T-PAY

PIC
PIC

9(8).
9(S)V99.

PIC V99.

PIC

X.

PIC X(5%).

PIC
PIC
PIC
pIC

PIC
PIC
p1C
PIC
p1C
PIC
1€

PI1C X

PIC
 2{+

12 {4
r1c
1 2{
rIC

X(4) VALUE SPACES.
X(34).

$65$8$59.99.

X(4) VALUE SPACES.

XXX VALUZ SPACES.
9(8).

XXX VALUE SPACES.
9(5) .99.

XXX VALUR SPACES.

.”l
XXX VALUEZ SPACES.

XXX VALUE SPACES.
$338$9.99.

9(6)v99.
9(6)V99.
9(6)V9I9.
9(6) V9.

-

[

122
123
124
128

05 TOTAL-Z-PAY PIC 9(6)V99.
05 PAY-AMT-A PIC 9(S)V99,
05 PAY=AMT=X PIC 9(5)V99.
05 PAY-AMT-M PIC 9(S)V99.
03 PAY-AMT-T PIC 9(5)V99.
0S5 PAY~-AMT-2Z PIC 9(S5)V99.

01 ERROR~-MESSAGE.
05 INVALID-DATA-RECORD PIC X(S0)
VALUE °*INVALID DATA ON THIS CARD*,

01 PFLAG-VALUE.
05 MORE~DATA~REMAINS PIC X VALUE ‘'Y‘,
88 NO-MORE-DATA~REMAINS VALUE °*N‘.

PROCEDURE DIVISION.
PROCESS-TRANSACTION.
OPEN INPUT IN-TRANSACTION
OUTPUT OUTPUT-PAYMENT.
MOVE ZEROES TO TOTAL-A~PAY, TOTAL~X=-PAY, TOTAL-M-PAY,
TOTAL-T~PAY, TOTAL~Z~-PAY.
READ IN=-TRANSACTION
AT END MOVE °'N°' TO MORE-DATA-REMAINS.
PERFORM CHECX-DATA UNTIL MORE-DATA-REMAINS = °'N'.
PERPORM WRITE-OUTPUT-TOTALS. .
CLOSE IN~-TRANSACTION

OUTPUT-PAYMENT.
STOP RUN.
CRECX-DATA.
b 4 ACCT-NUM IS NUMERIC

AND BILLED-AMT IS NUMERIC
AND PERCENTAGE 1S NUMERIC
AND (ACCT-CLASS = 'A* OR
ACCT-CLASS = ‘X* OR
ACCT-CLASS = 'M* OR
ACCT-CLASS = 'T* OR
ACCT-CLASS = '2')
PERFORM PROCESS~ONE-TRANSACTION
ELSE
WRITE OUTPUT-RECORD FROM ERROR-MESSAGE.
READ IN~TRANSACTION
AT END MOVE ’N*' TO MORE-DATA-REMAINS.

PROCESS=ONE~TRANSACTION.
MOVE ACCT-NUM TO W-ACCT-NUM,
MOVE BILLED-AMT TO W-BILLED-AMT.
MOVE PERCENTAGE TO W-PERCENTAGE.
MOVE ACCT-CLASS TO W-ACCT-CLASS.

TP ACCT-CLASS » °'A® OR ACCT-CLASS = °X’
COMPUTE PERCENTAGE » 1.00 - PERCENTAGE
IP ACCT-CLASS = °*A*

MULTIPLY BILLED-AMT BY PERCENTAGE
GIVING PAY-AMT-A ROUNDED

ADD PAY=AMT-A TO TOTAL-A-PAY

'HOVI PAY-AMT=-A TO W-PAYMENT

ELS

MULTIPLY BILLED-AMT BY PERCENTAGE
GIVING PAY-AMT=X ROUNDED

ADD PAY=-AMT-X TO TOTAL-X=-PAY

MOVE PAY-ANT-X TO W-PAYMENT.

IP ACCT-CLASS « N’

. 146 ["
‘; .
,
[}
126 MULTIPLY BILLED-ANT BY PERCENTAGE
127 GIVING PAY-AMT-M ROUNDED
128 ADD PAY-AMT-M TO TOTAL-M=PAY
129 MOVE PAY-AMT-M TO W-PAYMENT.
130
13 IF ACCT-CLASS = °T°
132 MOVE BILLED-AMT TO PAY-ANT-T -
133 ADD PAY-AMT-T TO TOTAL-T-PAY i
134 MOVE PAY-AMT-T TO W-PAYMENT.
135
136 IF ACCT-CLASS = 'Z°¢ .
137 MOVE BILLED-AMT TO PAY-ANMT-2 ;
138 ADD PAY-AMT-2 TO TOTAL-2-PAY ‘
139 MOVE PAY-AMT~Z TO W-PAYMENT,
140
141 WRITE OUTPUT-RECORD FROM W-OUTPUT-RECORD. ;
142 -
143 WRITE-OUTPUT-TOTALS.
144 MOVE TOTAL-A=~PAY TO TOTAL-CLASS-PAY.
145 MOVE ° TOTAL AMOUNT FOR CLASS A: ' TO NAME-OP-CLASS. o
146 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD. L
147
148 MOVE TOTAL-X-PAY TO TOTAL-CLASS-PAY.
149 MOVE ' TOTAL AMOUNT FOR CLASS X: ° TO NAME-OP-CLASS.
iso WRITE OUTPUT-RECORD FROM W~TOTALS-OUTPUT~RECORD.
s1 .
152 MOVE TOTAL-M=PAY TO TOTAL-CLASS-PAY.
153 MOVE ' TOTAL AMOUNT FOR CLASS M: ' TO NAME-OF-CLASS.
154 WRITE OUTPUT=-RECORD FROM W-TOTALS-OUTPUT-RECORD.
155
156 MOVE TOTAL-T-PAY TO TOTAL-CLASS-PAY.
157 MOVE * TOTAL AMOUNT FOR CLASS T: ' TO NAME-OP-CLASS.
158 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD. f
159
160 MOVE TOTAL-Z~PAY TO TOTAL-CLASS-PAY. .
161 MOVE * TOTAL AMOUNT FOR CLASS 2: ' TO NAME-OP-CLASS.
; 162 WRITE OUTPUT-RECORD FRON W-TOTALS-OUTPUT-RECORD.
; 163

S

ODIDPA B WA -

1 o ot
»N - O

PROGRAN 3

IDENTIPICATION DIVISION,
PROGRAM=-ID. SAMPLE-4.

147

REMARKS. ADAPTED FROM YOURDAN, ET AL. "LEARNING TO PROGRAN

IN STRUCTURED COBOL.*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~CONPUTER. PRIME.
OBJECT-COMPUTER., PRIME.
INPUT-QUTPUT SECTION.
F1LE-CONTROL.

SELECT APPLICATION~CARDS-FILE ASSIGN TO INPUTO.

SELECT PROFILE-LISTING

. DATA DIVISION.

FILE SECTION.

FD APPLICATION-CARDS-PILE
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS ARE OMITTED

DATA RECORD 1S NAME~ADDRESS-AND-PHONE-IN.

01 NAME-ADDRESS-AND~PHONE~IN.

NAME-IN
ADDRESS-IN
PHONE-IN
FILLER
ACCT-NUM~IN1

FD PROFILE-LISTING
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINT-LINE~OUT.
01 PRINT-LINE-OUT

WORKING-STORAGE SECTION.
01 COMMON-WS.
0% CARDS-LEPT
01 CREDIT-INFORMATION-IN.
05 CARD-TYPE~IN
0S5 ACCT-NUM=-IN2
0S PILLIR
05 CREDIT-INPO~IN
05 FPILLER
01 APPLICATION-DATA-WSB1.
0S NAME-AND-ADDRESS-WS.
10 NAME-WS
10 ADDRESS~-WS.
15 SBTREET-WS
1 CITY-WS
1S STATE-WS
15 ZIp-ws
0S PHONE-WS.
10 AREA-CODR-WS
10 NUMBR-WS
08 PILLER
03 ACCT-NUM-WS
05 CREDIT-INPO-WS.
10 3tx-ws
10 PILLER
10 MARITAL-STATUS-WS
10 PILLER
10 NUMBER-DEPENS-WS

ASSIGN TO OUTPUTO.

PIC
PIC
PIC
PIC
PIC

PIC

34

PIC
PIC
PIC
pIc
pIC

PIC

pIC
PIc
PI1C
23

PIC
PIC
ric
34+

1 24
pI1c
rIc
rIC
1c

X(20) .
X(40).
X{11) .
X(3) .
9(6).

X(132).

X(3).

X
9(6).
X.
X(22) .
X(50} .

x(20) .

x{20) .
x(13).
XX,

x(S) .

9(3).
x(8) .
X(3).
9(8) .

62 10 FILLER . PIC X.
63 10 INCOME-HBUNDREDS-W. PIC 9(¥.
64 10 PILLER PIC X.
65 10 YZARS-EMPLOYED-WS pIC 99.
66 10 PILLER PIC X.
67 10 OWN-OR-RENT-WS PIC X.
68 10 FILLER PIC X.
69 10 MORTGAGE-OR-RENTAL-WS PIC 9(I).
70 10 PILLER PIC X.
n 10 OTHER-PAYMENTS-WS PIC 9(3).
72 01 DISCR-INCOME-CALC-FTELDS-WSCS. :
73 05 ANNUAL-INCOME-WS PIC 9(%). ;
74 05 ANNUAL-TAX<WS PIC 9(S). !
75 05 TAX-RATE-WS PIC 9V99 VALUE 0.25.
76 0S5 MONTHS-IN-YEAR PIC 99 VALUE 12. P
” 05 MONTHLY-NET-INCOME-WS PIC 9(4). ?
78 . 05 MONTHLY-PAYMENTS-WS PIC 9(4). .
79 0S DISCR-INCOME-WS PIC S9(3).
80 _
8l 01 LINE-1-WSB3. i
82 05 FILLER PIC X(S) VALUE SPACES. '
83 05 NAME-L1 PIC X(20).
84 05 FILLER PIC X(11)
; 85 VALUE ° PHONE (°.
T 86 05 AREA-CODE-L1 PIC 9(3).
: 87 05 FILLER . PIC XX VALUE ') ‘.
. 88 05 NUMBR-L1 PIC X(8).
1 89 0S PILLER PIC X(3) VALUE SPACES.
90 05 SEX-L1 PIC X(5).
91 05 PILLER PIC X(9) VALUE SPACES.
92 05 FILLER PIC X(14)
93 VALUE 'INCOME s,
] 94 05 INCOME-HUNDREDS-L1 PIC 9(3).
95 05 FILLER PIC X(28)
96 VALUE *00 PER YEAR; IN THIS EMPLOY *.
97 05 YEARS-EMPLOYED-L1.
98 10 YEARS-L1 PIC XX. ?
99 10 DESCN-L1 PIC X(16).
. 100 01 LINE-2-WSB3.
- 101 05 FPILLER PIC X(S) VALUZ SPACES.
' 102 05 STREET-L2 PIC X(20). :
~ﬂ 103 05 FILLER PIC X(27) VALUEZ SPACES. l
. 104 05 MARITAL-STATUS-L2 PIC X(8). :
. 105 0S PILLER PIC X(7) VALUE SPACES.
: 106 0% OUTGO-DESCN PIC X(16). B
; 107 05 MORTGAGE-OR-RENTAL-L2 PIC 9(3). 1
- 108 0S PILLER PIC X(11) |
, | i 109 VALUEZ * PER MTH °,
{ {4 110 05 PILLER PIC X(22)
% . 111 VALUE 'DISCRETIONARY INCOME $°. ‘
112 05 DISCR-INCOME-L2 PIC 9() .
113 05 PILLER PIC X(9)
I' 114 VALUE * PER MTH °,
, 115 01 LINE-3-WSB3.
'J 116 0S PILLER PIC X(S) VALUE SPACES.]
3 X 117 08 CITY-L3 PIC X(13).
| \ 118 05 PILLER PIC X VALUE SPACE.
o 119 08 STATE-L) PIC XX. A
‘ * 120 05 PILLER PIC X VALUE SPACE. f
) 4 121 0S ZIP-L3 PIC X(S).
SRS B | 122 0S PILLER PIC X(7) VALUE * A/C: °.
! ';} 123 05 ACCT-NUM-L} PIC 9(8).
! .I_! 124 05 PILLER PIC X(12) VALUE SPACES.
e 125 0S NUMBER-DEPENS-L) PIC 9.

126
127
126
129
130
13
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
1s0
151
152
1583
154
188
156
157
1s8
189
160
161
162
162
164
165
166
167
168
169
170
171
172
173
174
178
176
177
179
179
180
181
182
183
184
18$
186
187
188
189

05 FILLER
VALUE * DEPENDENTS ‘e
0S5 PILLER
VALUE °*OTHER PAYMENTS $°.
05 OTHER-PAYMENTS-L3

PROCEDURE DIVISION.
AO=MAIN-BODY.
PERFORM Al~INITIALIZATION.
PERFORM A2-PRINT-PROFILES
UNTIL CARDS-LEFT = 'NO °*,
PERFORM A3~-END-OF-JOB.
STOP RUN.

Al-INITIALIZATION.

OPEN INPUT APPLICATION~CARDS-FILE
) OuTPUT PROFILE-LISTING.
¢e¢ USELESS INITIALIZATIONS HAVE BEEN COMMENTRD OUT
¢*¢ MOVE ZEROES TO ANNUAL-INCOME-WS.
*#é MOVE ZEROES TO ANNUAL-TAX-WS.
®e* MOVE ZEROES TO MONTHLY-NET-INCOME-WS.
*#% MOVE ZEROES TO MONTHLY-PAYMENTS-WS.
¢ MOVE ZEROES TO DISCR-INCOME-WS.

MOVE *'YES®' TO CARDS-LEPT.

READ APPLICATION-CARDS-PILE .

AT END MOVE 'NO * TO CARDS-LEPT.

* THE FIRST CARD OF A PAIR IS NOW IN THE BUFPER.

PIC X(14)
PIC X(16)
PIC 9(3).

A2-PRINT-PROFILES.
PERFORM B1-GET=-A=PAIR-OF~CARDS-INTO=WS,
PERPORM B2-CALC-DISCRETNRY-INCOME.
PERFORM Bl-ASSEMBLE-PRINT-LINES.
PERFORM B4-WRITE-PROPILE.

A3-END~OF-J0B,
CLOSE APPLICATION-CARDS-PILE
PROPILE-LISTING.

Bl+GET=A=PAIR-QF~CARDS~INTO-WS.
MOVE NAME~IN TO NAME-WS.
MOVE ADDRESS-IN TO ADDRESS-WS.
MOVE PHONE-IN TO PHONE-WS.
MOVE ACCT~NUM-IN1 TO ACCT-NUM-WS,
READ APPLICATION-CARDS~FPILE INTO CREDIT-INFORMATION=-IN
bl AT END MOVE 'NO *' TO CARDS-LEFT.
AT END MOVE * #2¢ MISSING SECOND CTARD OF PAIR ¢ee?
TO PRINT-LINE-OQUT
WRITE PRINT-LINE~OUT AFTER ADVANCING 2 LINES
PERFORM A3-~END-OP-JOB
STOP RUNM.
® THE SECOND CARD OF THE PAIR 1S NOW IN THE BUPPER.
MOVE CREDIT~INPO~IN TO CREDIT-INPO-WS
READ APPLICATION~CARDS-PILR
AT END MOVE °‘NO ° TO CARDS-LEPT,
® TRE PIRST CARD OF THE NEXT PAIR IS NOW IM THE BUPPER.

B2-CALC-DISCRETNRY-IMNCOME.

COMPUTE ANNUAL-INCOME-WS = INCOME~-AUNDREDS-WS * 100.
COMPUTE ANNUAL-TAX-WS = ANNUAL~INCOME-WS ¢ TAR<RATE-WS.
COMPUTE MONTHLY-NET-INCONE-WS ROUNDED

® (ANNUAL-INCOME-WE ~ ANNUAL-TAX-WS) / MONTHS-IN-YRAR,
COMPUTE MONTHLY=PAYMENTS-NS & MORTGAGE-OR-RENTAL-WS

+ OTHER-PAYMENTS-WS.

COMPUTE DISCR-~INCOME-WS o MONTHLY~-NET-INCONE-WS

[e

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
21§
216
21?7
218
219
220
221
222
223
224
228
226
227
228
229
230
231
232
222
234
235
236
237
238

« NONTHLY-PAYMENTS-WS
ON S1ZE ERROR MOVE 999 TO DISCR-INCOME-WS.
* DISCRETIONARY INCOMES OVER $999 PER MONTH ARE SET AT $999.

83-ASSEMBLE-PRINT-LINES.,

MOVE NAME-WS TO NAME-L1.

MOVE STREET-WS TO STREET-L2.

MOVE CITY-WS TO CITY-L3.

MOVE STATE-WS TO STATE-L)J.

MOVE ZIP-WS TO IIP-L].

MOVE AREA-CODE-WS TO AREA-CODE-L].

MOVE NUMBR-WS TO NUMBR-L1.

MOVE ACCT-NUN-WS TO ACCT-NUM-L3.

IF SEX-WS = 'M' MOVE 'MALE ' TO SEX-L).

IF SEX-WS = ‘P’ MOVE ‘FEMALE' TO SEX-Ll.

IF MARITAL-STATUS-NS = 'S' MOVE 'SINGLE °*
TO RARITAL-STATUS-L2.

IP MARITAL=STATUS-WS = ‘M* MOVE °*MARRIED °*
TO MARITAL-STATUS-L2.

IF MARITAL-STATUS-WS = 'D* MOVE ‘'DIVORCED'
TO MARITAL-STATUS-L2.

IF MARITAL=-STATUS-WS = ‘W' MOVE ‘WIDOWED °*
TO MARITAL-STATUS-L2.

MOVE NUMBER-DEPENS-WS TO NUMBER-DEPENS-L].

MOVE INCOME~HUNDREDS-WS TO INCOME~HUNDREDS-L1.

IF YEARS-EMPLOYED-WS IS EQUAL TO 0

MOVE °'LESS THAN 1 YEAR' TO YEARS-EMPLOYED-L1

ELSE
MOVE YEARS-EMPLOYED-WS TO YEARS~L1
MOVE * YEARS ' TO DESCN-L].
1P OWN-OR-RENT-WS = ‘0O’ MOVE 'MORTGAGE: S
TO OUTGO-DESCN.
IF OWN-OR-RENT-WS = ‘R’ MOVE 'RENTAL: s

TO OUTGO-DESCN.
MOVE MORTGAGE-OR-RENTAL=-WS TO MORTGAGE~OR-RENTAL-L2.
MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-L3.
MOVE DISCR-INCOME-WS TO DISCR-INCOME-L2.

B4~-WRITE-PROPILE.
s*® MOVE SPACES TO PRINT-LINE-OUT.
WRITE PRINT-LINE-OUT FROM LINE-1-WSBJ3
AFPTER ADVANCING 4 LINES.
*ee MOVE SPACES TO PRINT-LINE-OQUT.
WRITE PRINT-LINE-OUT PROM LINE-2-WSBJ
APTER ADVANCING 1 LINES.
eee MOVE SPACES TO PRINT-LINE-QUT.
WRITE PRINT-LINE-OUT FROM LINE-3-WSB3
APTER ADVANCING 1 LINES.

p——
[——)

OO IR & W

DD St put Pt Bt s 1 et Pt b PP
COVBRIOIVLWNFO

»
14

22
23

151

PROGRAM ¢

IDENTIFICATION DIVISION.

PROGRAN-1D. SRMFREP.

AUTHOR. R A OVERBEERK.

REMARKS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
l:tbtl'k:‘l'ﬂﬂl?o FOR ALL OF THE STUDENTS RECORDED IN
THE SRMPF.

ADAPTED TO THE COBCL MUTATION SYSTEM BY ALLEN ACREE.
ERRORS DISCOVERED:

(1) ERRORS IN THE INPUT FILE SETUP, CHECKED POR
IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED
DATA, PARTICULARLY LINE-COUNT. CORRECTED WITH
A VALUE CLAUSE.
ENVIRONMENT DIVISION.
CONPIGURATION SECTION.
SOURCE-COMPUTER. CNMS.,
OBJECT-COMPUTER. CMS.
SPECIAL-NAMES. CO) IS TOP-OP-PAGE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MASTER ASSIGN TO INPUTO, °
SELECT PRINT-PILE ASSIGN TO OUTPUTO.

DATA DIVISION.

FILE SECTION.

FD MASTIN
RECORD TONTAINS 141 CHARACTERS,
LABEL RECORDS AREZ STANDARD,
DATA RECORD 1S ITEM.

01 ITEN.
02 SOC~-SEC-IN,
03 SOC~-SEC~IN-) PIC X(3).
03 SOC-SEC=IN-2 PIC X(2).
03 SOC-SEC-IN-) PIC x(4).
02 NAME-IN PIC X(5).
02 ADDR-]IN-] PIC X(S5).
02 ADDR-IN=2 PIC X(S5).
02 MAJOR-IN PIC Xx(4).
02 STATUS-IN PIC x(1).
02 MNO-COURSES PIC 99.
02 COURSEZ-ENTRY OCCURS 11 TIMES.
03 DEPT-OFP PIC X(2).
03 COURSE-=NO PIC X{2).
03 CREDITS PIC 99.
03 SEINESTER PIC X(1).
03 YEAR : PIC X(:).
03 GRADE PIC R(1).

FD PRINT-PILE
RECORD CONTAINS 89 CHRARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS8 PRINT-BUPP,

01 PRINT-BUPP P1C x(09).
WORKING-STORAGE SECTION.

77 END-ALL PIC 99.

77 END=MARKER PIC 99.

77 P-INDEX PIC 9.

77 POINTS PIC 999.
77 CR-HRS PIC 999.

——— e

[T V"

120
12}

125

77

77
77
77
)
7

0l

0l

01

0l

[}

INCR PIC 99.
C-INDEX PIC 99,
PAGE=-NO PIC 999 VALUR IS 1.
LINE-COUNT PIC 99 VALUE ZERO.
SAVE-KEY PIC X(4).
TOT-NO-RECORDS PIC 9999999 VALUE 15 0.
SUB-TOT-NO PIC 9999999.
READER.
02 FILLER PIC Xx(14).
02 COLLEGE PIC X(30).
02 DATE-IN PIC X(8).
TRAILER,
02 PILLER PIC X(49).
02 NO-RECORDS PIC 9999999.
PRINT=LINE.
02 PFILLER PIC X(1).
02 SOC-SEC~OUT.

03 SOC-SEC-01 PIC X(3).

03 SOC-SEC-F1 PIC X(1l).

03 SOC-SEC-02 PIC X(2).

03 SOC~-SEC-F2 PIC X(1).

03 SO0OC-SEC-03 PIC X(4).
02 PILLER PIC X(2).
02 NAME-ADDR PIC X(S).
02 FILLER PIC X(1).
02 MAJOR-O PIC X(4).
02 FILLER PIC X(1).
02 STATUS-0 PIC X(1).
02 FPILLER PIC X{1).
02 GPA PIC 9.99.
02 FPFILLER PIC X(2).
02 COURSE-D OCCURS 3 TIMES.

03 C-DEPT PIC X(2).

03 PILLER PIC X(1}).

02 C-NO PIC X(2).

03 FILLER PIC X(1).

03 CREDITS-0 PIC 29.

03 FILLER PIC X(1).

03 SEMESTER-O PIC X(1).

03 DASH-O PIC X(1).

03 YEAR-O PIC X(2).

03 FILLER PIC X(2).

03 GRADE-O PIC X(1).

03 PILLER PIC X(2).
02 PILLER PIC X(2).
PAGE-~HEADER.
02 PILLER PIC X(4) VALUE SPACES.
02 DATE-~O PIC X(8).
02 PILLER PIC X(17) VALUE SPACES.
02 COLL~O PIC X(30).
02 PILLER PIC X(17) VALUE SPACES.
02 PILLER PIC X(S) VALUE IS °'PAGE®.
02 PAGE-O PIC 229.
02 PILLER PIC X(5) VALUE SPACES.
COL~HDR-1.
02 PILLER PIC X(20)

VALUE °*° SOC SEC Me Al

62 PILLER PIC X(10) VALUE 'MAJ ST GPA‘.
02 PILLER PIC X(9) VALUE SPACES,
02 FILLER PIC X(5) VALUR °COURSE’.
02 PILLER PIC X(12) VALUE SPACKS.
02 PILLER PIC X(6) VALUR 'COURSE‘.
02 PILLER PIC X(12) VALUR SPACES.

—— b

-——

Sm—— ————————
Pt

|
|
|

126 02 PILLER PIC X(5) VALUE ‘COURSE'.
127 02 PILLER PIC X(8) VALUE SPACES.
128 01 COL-HDR-2.
129 02 PILLER PIC X(33) VALUE SPACES.
130 02 PFILLER PIC X(18)
131 VALUEZ * NMBR CR S~-YR GCR ',
132 02 PILLER PIC X(18)
133 VALUE * NMBR CR S-YR GR °',
134 02 PILLER PIC Xx(20)
' 135 VALUE * NMBR CR S-YR GR °, -
' 136 0] SUB=-TOT-LINE.
H 137 02 FILLER PIC X(4) VALUE SPACES.
: 138 02 FILLER PIC X(8)
139 VALUE IS ‘TOTAL = ¢,
140 02 SUB-TOT PIC 2222229.
; 142 02 PILLER PIC X(70) VALUE SPACES.
ﬁ Y 142 PROCEDURE DIVISION.
, 143 * MAIN-PROGRAM SECTION.
. 144 START.
: 145 OPEN INPUT MASTER OUTPUT PRINT-FPILE.
146 READ MASTER INTO HEADER AT END GO TO EOP.
147 IF SOC-SEC-IN IS = SPACES GO TO GOT-HEADER.
‘ 148 MOVE * NO HEADER FOUND ON THE MASTER PILE ®*¢' TO PRINT-LINE.
] i 149 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
F 150 GO TO CLOSE-FILES.
151 GOT-HEADER.
152 MOVE COLLEGE TO COLL-O.
153 MOVE DATE-IN TO DATE-O.
154 READ MASTER AT END GO TO EOF.
155 IP SOC-SEC-IN IS NOT = '999999999°' GO TO SAVE-DEPT-NAME.
156 MOVE ' NO ITEM RECORDS IN MASTER PILE **e¢¢ TO PRINT-LINE.
187 PERFORM PRINT2~-ROUTINE THRU PRINT2-EXIT.
158 GO TO CLOSE-FILES.
159 SAVE-DEPT-NAME.
160 MOVE MAJOR-IN TO SAVE-KEY. .
161 * NAME OF DEPARTMENT 1S5 SUBTOTAL KEY. BREAK OCCURS WHENEVER
. 162 ® PIELD IS DIPFERENT ON TWO CONSECUTIVE RECORDS. 1
| . 163 MOVE 0 TO SUB-TOT-NO.
K 164 MOVE 1 TO PAGE-NO.
! - 145 ¢ PAGE-NO IS RESET TO 1 FOR BEACR DEPARTMENT REPORT.
' 166 MGVE 16 TO LINE-COUNT.
167 MOVE SPACES TO PRINT-LINE.
168
169 ITEM-LOOP.
i 170 PERFORM ITEM-ROUTINE THRU ITEM-EXIT.
! 171 ADD 1 TO SUB-TOT-NO.
; 172 READ MASTER INTO TRAILER AT END GO TO EOP.
173 IP MAJOR<IN IS » SAVE-REY GO TO ITEM-LOOP.
y 174
! A 175 DO-SUB-TOTALS.
i 176 MOVE SUB-TOT-NO TO SUB-TOT.
‘ [177 WRITE PRINT-BUPP FPROM SUB-TOT-LINE APTER ADVANCING 2 LINES.
; b 178 ADD SUB=TOT-NO TO TOT-NO-RECORDS.
r ; . 179 I? SOC-SEC-IN IS NOT = 999999999° GO TO SAVE-DEPT-NAME.
! 180 MOVE TOT-NO-RECORDS TO SUB-TOT.
! 181 WRITE PRINT=-BUFF PROM SUB-TOT-LINE
! ; 182 APTER ADVANCING TOP-OP-PAGE.
E ' 183 IP NO-RECORDS.1S = TOT=-MO-RECORDS GO TO CLOSE-PILES.
) i 184 MOVE ' ®%e¢ MASTER TRAILER VERIPICATION MAS PAILED ¢ee
SN 188 TO PRINT-LINE.
3 4 186 PERFORM PRAINT2-ROUTINE TNRU PRINT2-EXIT.
: | ! 187 CLOSE-PILES.
k D 188 CLOSE MASTER PRINT-PILE.
s 189 STOP RUN.
‘ z ; {
f

T

190
191
192
19)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
234
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
282
253

gEoF.
MOVE ' EOF ON MASTER FILE weeet IO PRINT-LINE.
PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
GO TO CLOSE-FILES.

¢ SUB-ROUTINE SECTION.

PRINT1-ROUTINE,
IP LINE-COUNT 1S ¢ 16 GO TO NORMAL-PRINT.
PERFORM HEADER-ROUTINE THRU HEADER-EXIT.
WRITE PRINT-BUFF FROM PRINT-LINEZ AFTER ADVANCING 2 LINES.
ADD 2 TO LINE-COUNT.
GO TO COMMON-POINT.
NORMAL-PRINT. .
WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING] LINES.
ADD 1 TO LINE-COUNT.
COMMCN-POINT.
MOVE SPACES TO PRINT-LINE.
PRINT1-EXIT. EXIT.

PRINT2-ROUTINE.
IF LINE-COUNT IS > 14
PERFORM BEADER-ROUTINE THRU HEADER-EXIT.
WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES.
ADD 2 TO LIME-COUNT. .
MOVE SPACES TO PRINT-LINE.
PRINT2-EXIT. EXIT.

HEADER-ROUTINE.
MOVE PAGE-NO TO PAGE-0.
WRITE PRINT-BUFF FROM PAGE-HEADER
AFTER ADVANCING TOP-CF-PAGE.
ADD 1 TO PAGE-NO.
WRITE PRINT-BUFF FROM COL-HDR-1 AFTER ADVANCING 2 LINES.
WRITE PRINT-BUFF FROM COL-HDR-2 AFTER ADVANCING 1 LINES.
MOVE 0 TO LINE-COUNT.
HEADER-EXIT. EXIT.

ITEM-ROUTINE.
MOVE SOC-SEC-IN-1 TO SOC-SEC-01.
MOVE SOC~SEC~IN-2 TO SOC-SEC-02.
MOVE SOC-SEC-IN-3 TO SOC-SEC-03.
MOVE '~' TO SOC-SEC-P1.
MOVE *'-' TO SOC-SEC-F2.
MOVE NAME-IN TO NAME-ADDR.
MOVE MAJOR-IN TO MAJOR=-0O.
MOVE STATUS~IN TO STATUS-O
® CALCULATE THE GPA.
MOVE 0 TO POINTS.
MOVE 0 TO CR-RRS.
PERPORM GPA-ACCUM THRU GPA~-EXIT VARYING C-INDEX
FROM 1 BY 1 UNTIL C-INDEX IS > NO-COURSES.
IP CR-HRS IS = 0 GO TO NO-GPA.
DIVIDE POINTS BY CR-HRS GIVING GPA ROUNDED.
IN THE POLLOWING THESE INDICES ARE USED:
END-ALL: THEZ INDEX OF THE PIRST UNUSED COURSE
ENTRY; THIS MARKS THE END OF THE COURSES
TO PRINT;
END-MARKER: WHEN FILL-LINE IS CALLED END-MARKER
POINTS AT THE PIRST COURSE ENTRY PAST THE
LAST ENTRY TO 88 PUT INTO THE LINE;
C-INDEX: WHEN PILL-LINE IS8 CALLED C-INDEX POINTS
AT THE PIRST COURSE ENTRY WHICH GETS
PUT INTO THE PRINT-LINE; THUS, IP C-INDEX

AR A .S A it ey 10k M RN o ot et bl

254 @ IS EQUAL TO END-MARKER, NO COURSE ENTRIES
255 * GET PUT INTO THE PRINT LINE;
256 ¢ P-IMDEX: INDEXES THE SPOT IN THE PRINT-LINE
257 ¢ WHRERE THE ENTRY POINTED TO BY C-INDEX
2:: . IS TO BE MOVED; THUS, ITS RANGE IS 1 TO 3.
2
260 NO-GPA.
261 MOVE 1 TO C-INDEX.
262 ADD] NO~COURSES GIVING END-ALL.
263 MOVE 4 TO END-MARKER.
264 1P END-ALL IS < END-~MARKER MOVE END-ALL TO END-MARKER.
265 PERFORM FILL-LINE THRU FILL-EXIT.
266 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
267 MOVE ADDR-IN-1 TO NAME-ADDR.
268 MOVE 7 TO END=-MARKER.
269 IP END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
270 PERFORM PILL-LINZ THRU FILL-EXIT.
27 PERFORM PRINT1-ROUTINE THRU PRINT1-EXIT.
272 MOVE ADDR-IN-2 TO NAME-ADDR.
H 273 MOVE 10 TO END-MARKER.
; 274 COURSE-LOOP.
: 278 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
N 276 PERFORM PILL-LINE THRU FILL-EXIT.
; 277 PERPORM PRINT1-ROUTINE THRU PRINT1-EXIT.
} 278 IF C-INDEX = END-ALL GO TO ITEM-EXIT.
279 ADD 3 C-INDEX GIVING END-MARKER.
280 GO TO COURSEZ-LOOP.
281 ITEM-EXIT. EXIT.
282 PILL-LINE.
283 MOVE 1 TO P-INDEX.
284 CHECK-END.
285 IP C-INDEX 1S =« END-MARXER GO TO PILL-EXIT.
286 MOVE DEPT-OFF (C-INDEX) TO C~DEPT (P-INDEX).
287 MOVE COURSE-NO (C-INDEX) TO C-NO (P-INDEX).
288 MOVE CREDITS (C~INDEX) TO CREDITS=0 (P~INDEX).
289 MOVE SEMESTER (C-INDEX) TO SEMESTER-O (P-INDEX).
\ 290 MOVE *~' TO DASH-0 (P=-INDEX).
! - 291 MOVE YEAR (C-INDZX) TO YEAR-Q (P-INDEX).
i . 292 MOVE GRADE (C-INDEX) TO GRADE~O (P-INDEX).
' J 293 ADD 1 TO C-INDEX.
: 294 ADD 1 TO P-INDEX.
] ! 295 GO TO CHECKR-END.
{ 296 PILL-EXIT. EXIT.
. 297
: 298 GPA-ACCUM,
Vo 299 1P GRADE (C-INDEX) IS NOT = °A' GO TO NOTA.
by 300 MULTIPLY CREDITS (C-INDEX) BY 4 GIVING INCR.
1] 301 GO TO COMMCM-ADD.
: " 302 NOTA.
; 303 IP GRADE (C-INDEX) IS NOT = 'B*' GO TO NOTB.
N 304 MULTIPLY CREDITS (C-INDEX) BY 3 GIVING INCR.
} j 308 GO TO COMMON-ADD.
i , 306 MOTB. A
. \ 307 IP GRADE (C~INDEX) IS NOT = 'C’ GO TO NOTC.
i 308 MULTIPLY CREDITS (C-INDEX) 8Y 2 GIVING INCR.
. 309 GO TO COMMOM-ADD.
. 310 NOTC.
; A k39 IP GRADE (C~INDEX) I8 NOT = 'D' GO TO NOTD.
‘ 312 NULTIPLY CREDITS (C-INDEX) BY 1 GIVING INCR.
* . 1l GO TO COMMON-ADD.
I i 314 NOTD,
I 318 IF GRADE (C~INDEX) 18 NOT = °'P' GO TO GPA-EXIT.
l;; 216 NOVE 0 TO INCR.
iv? . 317 Cmﬂl-lbn.

| ~ | | . 156 L

e ADD INCR TO POINTS.

al9 ADD CREDITS (C-INDEX) TO CR-HRS.
¢ 320 GPA-EXIT. EXIT.

321

RN Suanigg ittt o yo-am s e

e ek
-

VDI RAWMEWN -

L0 2 2N BN B 2N BN BE AN BN 2N BN BN BN BN BN NN NN BN N BN I BN AN BE N 3N BN 3 N A 3

PROGRAN S

IDENTIFICATION DIVISION.

REPORT CONTAINS THE INPUT DATA ALONG WITH THE
CURRENT COMMISSION FOR EACH SALESMAN. AT THE
END OF THIS SINGLE SPACED REPORT THE FOLLOWING
TOTALS ARE PRINTED: YEAR TO DATE SALES, CUR-
RENT SALES, CURRENT COMMISSION.

CURRENT COMMISSION IS CALCULATED AS FOLLOWS:
CURRENT-COMMISSION & CURRENT~SALES *
(CONMISSION-RATE ¢ VOLUME~BONUS + DEPARTMENT-BONUS)

WITH DEPARTMENT BONUS DETERMINED AS FOLLOWS:

DEPT BONUS
01 0.1%
02 0.1%
o4 0.78%
0S 0.6%
06 0.4%
07 0.64%
09 0.4%
OTHER 0.0%
WITH VOLUME BONUS DETERMINED AS FOLLOWS:
AVERAGE MONTHLY SALES BONUS
UNDER $500 0.0%
$500 TO $999.99 0.3%
$1000 TO $1999.99 0.4%
OVER $2000 0.6%

WITH AVERAGE MONTHS SALES DETERMINED AS FOLLOWS:
AVERAGE-MONTHLY~SALES = .
(YEAR=-TO=DATE-SALES ¢ CURRENT-SALES) / MONTHS-EMPLOYED
PROGRAM-ID. COMMISSION-REPORT.

AUTHOR.
DANIEL CASTAGNO,ICS 3400,STUDENT NUMBER 654, PROGRAM 1.

SLIGHTLY MODIPIED FOR CMS.1 BY A.ACREE.

MUTATION TESTING UNCOVERED THE FOLLOWING ERRORS AND
INEPPICIENCIES:

(1) REPORT MEADER WITH PAGE ADVANCE WAS NOT PRINTED
APTER PULL-PAGE CONDITION RAISED BY INVALID DATA RECORD
EXTRA PERFORM INSERTED.

(2) DATA ITEMS DEFPINED AND NEZVER USED -- DELETED.

(3) MOVE STATEMENT REPEATED -- SECOND VERSION DELETED.
(4) TWO USELESS INITIALIZATIONS DELETED.

REMARKS .

ENVIROMNENT DIVISION.

CONP IGURATION SECTION.
SOURCE-COMPUTER.

CYBER-74.
0BJECT-COMPUTER.

CYBER-74.
SPECIAL-NANES.

€01 1§ TO-TOP-OF~PAGE.

INNUT-QUTPUT SECTION.

ot

~—
-
S-S Py

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
100
109
110
111
112
113
114
118
116
117
118
119
120
121
122
123
124
125

FILE-CONTROL.

SELECT CARD=-FILE ASSIGN TO INPUTO.
SELECT PRINT-FPILE ASSIGN TO OUTPUTO.

DATA DIVISION.

FILE SECTION.

FD CARD-FILE

01

PD

0l

RECORD CONTAINS 80 CHARACTERS,
LABEL RECORDS ARE OMITTED,
DATA RECORD IS CARD-RECORD.

CARD-RECORD.
02 1-CARD-DATA.
03 I-STORE-NUMBER PIC 99.
03 1-DEPARTMENT PIC XX.
03 I-SALESMAN-NUMBER PIC 999.
03 I-SALESMAN-NAME PIC X(20) .
03 I-YEAR-TO-DATE-SALES PIC 9(5)V99.
03 I-CURRENT-SALES PIC 9(5)V99.
03 I-COMMISSION-RATE PIC V99.
02 I-MONTHS-ENPLOYED PIC 99.
02 PILLER PIC X(3S) .
PRINT-PILE

RECORD CONTAINS 132 CHARACTERS,
LABEL RECORDS ARE OMITTED,
DATA RECORD IS LINE-RECORD.

LINE-RECORD PIC Xx(132).

WORKING-STORAGE SECTION.

77
77
77
77
77
77
77
77
77
17
77

17
77
77

*01
*

01

W-DEPARTMENT-BONUS PIC V999.

W-VOLUME-BONUS PIC V999.

W-DEPARTMENT PIC XX.

W=-STORE-NUMBER PIC 99.

W-SALESMAN-NUMBER PIC 999.

W-YEAR-TO~DATE~SALES PIC 9(S)V99.

W-CURRENT~-SALES PIC 9(S5)V99.

W-COMMISSION~-RATE PIC V99.

W-MONTHS-EMPLOYED PIC 99.

W-CURRENT-COMMISSION PIC 9(4)V99.

W-TOTAL-YEAR-TO-DATE-SALES PIC 9(9)V99

VALUE 0.

W-TOTAL~-CURRENT-SALES PIC 9(8)VvV99

VALUE 0.

W-TOTAL-CURRENT-COMMISSION PIC 9(7) V99

VALUE 0.)

W-AVERAGE-MONTHLY~SALES PIC 9(7)V99

VALUE 0.

REY-TO-RECORDS.

02 SALESMAN-NUM PIC 999.

FLAGS.

02 VALID-DATA~-FPLAG PIC XXX
VALUE °‘YES®.

02 MORE-DATA-REMAINS-PLAC PIC XXX

VALUE °'YES'.

“

L e 1A T e T B,

T~ T L F g ar

159
]
- 126 01 CONSTANTS.
} 127 02 DEPT.
328 03 DEPT-1-OR-2 PIC V999
129 VALUEZ 0.001.
130 03 DEPT-6-OR-9 PIC V999
13 VALUE 0.004.
132 03 DEPT-5-0R-7 PIC V999
133 VALUE 0.006.
134 03 DEPT-4 PIC V999
135 VALUE C.007. :
: 136 03 DEPT-OTHER PIC V999
o 137 VALUE 0.000.
, 138 02 VOLUMN.
‘ . 133 03 LEVEL-l PIC V999
; 140 VALUE .
£ 141 03 LEVEL-2 PIC V999
(o 142 VALUE 0.003.
[143 03 LEVEL-) PIC V999
3 g 144 VALUE 0.004.
i 145 03 LEVEL-d PIC V999
: 146 VALUE 0.006.
147
148 01 COUNTERS.
149 02 LINE-COUNT PIC 99
150 VALUE 0.
151
182 01 PINAL-TOTAL-LINE.
153 02 FILLER PIC X(10)
154 VALUE ° TOTAL'.
155 02 FILLER PIC X(51)
156 VALUE SPACES.
' 157 02 O-TOTAL-YEAR-TO-DATE-SALES PIC 2(9).99.
158 02 PILLER PIC XXX
159 VALUE SPACES.
' , 160 02 O-TOTAL~CURRENT-SALES PIC 2(8).99.
* o 161 02 FILLER PIC X(15)
{ 2 162 VALUE SPACES.
1 S 163 02 O-TOTAL-CURRENT-COMMISSION PIC Z(7).99.
4 i 164 02 PILLER PIC X(20)
! 165 VALUE SPACES.
: 166
167 01 REPORT-LINE-1.
1 168 02 PILLER PIC X(61)
o 3 169 VALUE SPACES.
' 170 02 PILLER PIC X(10)
L 1711 VALUE 'COMMISSION'.
1 . 172 02 PILLER PIC X(50)
‘ 173 VALUE SPACES.
? | 174 02 PILLER PIC X(6)
a 17% VALUE 'PAGE °.
f 176 02 O-PAGE-NUMBER PIC 999
- 177 VALUE O.
; kﬁ 178 02 FILLER PIC XX
| 179 VALUEZ SPACES.
4 180
O 181 01 REPORT-LINE-32.
i g 182 02 PILLER »2C X(6I)
RS A 183 VALUEZ SPACES.
M 184 02 PILLER PIC X(6)
‘2: 188 VALUE °'REPORT .
AR 186 02 PILLER PIC X(63}
‘t;{' i ::: VALUE SPACES.
1 b 189 01 NMEADING-LINE-1.
h :‘é j
v
o1l

- e W eravens

. e

———
-~

R

B

I .

-

¢ —
S

150
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
2313
234
238
236
237
238
239
240
241
242
24)
244
249
246
247
240
249
250
251
252
sy

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

FILLER

VALUE SPACES.
FPILLER

VALUE °*STORE'.
FILLER

VALUE SPACES.
PILLER

VALUE °‘DEPARTMENT®.
FILLER

VALUE SPACES.
FILLER

VALUE *SALESMAN®.
FILLER

VALUE SPACES.
FPILLER

VALUE °*SALESMAN'.
PILLER

VALUE SPACES.
FILLER

VALUE ‘YEAR TO DATE'.

FILLER

VALUE SPACES.
FILLER

VALUE °'CURRENT'.
FILLER

VALUE SPACES.
FILLER

VALUE °*COMMISSION'.
FILLER

VALUE SPACES.
PILLER

VALUE ‘'CURRENT®.
FILLER

VALUE SPACES.
FILLER

VALUE 'MONTHS'.
PILLER

VALUE SPACES.

HEADING-LINE-2.

02
02
02
02
02
02
02
02
02
02
02
02

PILLER

VALUE SPACES.
PILLER

VALUE °NUMBER®.
FILLER

VALUE SPACES.
FILLER

VALUE °‘NUMBER®.
PILLER

VALUE SPACES.
PILLER .
VALUE °*NAME’.
PILLER

VALUE SPACES.
FILLER

VALUE °*SALES'.
PILLER

VALUE SPACES.
PILLER

VALUE °'SALES®.
PILLER

VALUE SPACES.
PILLER

VALUE *RATE’.

[444
PIC

2+
4 {4
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
?!C
PIC
PI1C
PIC
PIC
PIC
pIC

pIC
pIC
pIC
pIcC
24
PIC
rPIC
44~
pPIC
PIC
24
PIC

X(4)
x(s)
X(4)
X(10)
X(4)
Xx(8)
X(9)
X(8)
X(10)

@ m——

X(12)
x(S) i
x(7)

x(4) P
X(10)

x(S) : ;
X(7)
X(6)
X(6)
x(8)

X(4)
X(6) L
X(18)
x(6) g
X(12)
x(e)
X(16)
X(8)
x(9)
x(S)
x(e)
x(4)

-

ek [——

e -
.

- et st VM e

. 161
! 254 02 FILLER PIC X(7)
258 VALUE SPACES.
256 02 PILLER PIC X(10)
287 VALUE *COMMISSION® .
238 02 PILLER PIC X(3)
259 VALUE SPACES.
260 02 PILLER PIC X(8)
261 VALUZ *EMPLOYED' .
262 02 FPILLER PIC X(7)
263 VALUE SPACES.
264
i 265 01 VALID-DATA-LINE.
' 266 02 FILLER PIC X(6)
; 267 VALUE SPACES. "
i 268 02 O-STORE-NUMBER PIC 29.
. 269 02 FPILLER PIC X(9)
) 270 VALUE SPACES.
| 271 02 O-DEPARTMENT PIC XX.
g 272 02 PILLER PIC X(10)
i 273 VALUE SPACES.
; 274 02 O0-SALESMAN-NUMBER PIC 229.
| 275 02 PILLER PIC X(6)
276 VALUE SPACES.
277 02 O-SALESMAN-NAME PIC X(20).
278 02 FILLER PIC X(6)
279 VALUE SPACES. .
280 02 O-YEAR-TO-DATE~SALES PIC 2(5).99.
281 02 FILLER PIC X(S)
282 VALUE SPACES.
283 02 O-CURRENT-SALES PIC 2(6).99.
284 02 PILLER PIC X(7)
205 VALUE SPACES.
286 02 O-COMMISSION-RATE PIC .99.
287 02 PILLER PIC X(T)
288 VALUE SPACES.
» 289 02 O-CURRENT-COMMISSION PIC 2(S).99.
{ . 290 02 FPILLER PIC X(8)
o 291 VALUE SPACES.
292 02 O-MONTHS-EMPLOYED pIC 29.
'4 293 02 PILLER PIC X(10)
294 VALUE SPACES.
' 295
} 296 01 INVALID-DATA-LINE.
X 297 02 O0-BAD-DATA PIC X(4S).
' 298 02 PILLER PIC X(30)
299 VALUE ' INVALID DATA ON THIS CARD',
300 02 PILLER PIC X(ST)
, 301 VALUE SPACES.
302
303
304
308
306 PROCEDURE DIVISION.
]. 307
f H 308
309 PRZPARE-PAYMENT-REPORT.
310 OPEM INPUT CARD-PILE
’ ' 31 OUTPUT PRINT-PILE.
W B 312 READ CARD-PILE
3§3 AT END MOVE 'NO' TO MOREZ-DATA-REMAINS-PLAG.
i 34
i s IP MORE-DATA-REMAINS-PLAG = ‘'YES®
316 PERPORM REPORT-HEADER-OUTPUT
37 PERFORM HEADING-OUTPUT

lle PERPORN COMNISSION-CALCULATION

319 UNTIL NORE-DATA-REMAINS-FLAG = *NO °. j
320 o
321 PERFORM CALCULATED-TOTALS-OUTPUT.
322 CLOSE CARD-PILE
323 PRINT-PILE.
324 STOP RUN.
328
326
327 * CHECK VARIABLES TO SEE IF THEY CONTAIN VALID INFORMATION
328
229 VALIDATION.
330 IF I-STORE-NUMBER IS NUMERIC o
: 331 AND I-SALESMAN-NUMBER IS NUMERIC !
! 332 AND 1-YEAR-TO-DATE-SALES IS NUMERIC
; 233 AND I-CURRENT-SALES IS NUMERIC v
; 334 AND I-COMMISSION-RATE IS NUMERIC Co
{ 335 AND I-MONTHS-EMPLOYED IS NUMERIC :
336 MOVE 'YES' TO VALID-DATA-FLAG !
! 337 ELSE ?
2 338 MOVE 'NO' TO VALID-DATA-FLAG. |
¢ 339 i
i 340
L 341 * MOVE INPUT INFORMATION TO WORKING STORAGE)
! 342 * VARIABLES ,
343
344 DATA-MOVE.
345 MOVE I-STORE-NUMBER TO W-STORE-NUMBER.
346 MOVE I~DEPARTMENT TO W-DEPARTMENT.
347 MOVE I-SALESMAN-NUMBER TO W-SALESMAN-NUMBER.
348 MOVE I~YEAR-~TO=-DATE-SALES TO W-YEAR-TO-DATE-SALES.
249 MOVE I~CURRENT-SALES TO W~CURRENT-SALES.
350 MOVE I~COMMISSION-RATE TO W-COMMISSION-RATE.
3s1 MOVE I~MONTHS-EMPLOYED TO W-MONTHS-EMPLOYED.
352
353 CALCULATE-DEPARTMENT-BONUS.
354 IF W-DEPARTMENT = ‘01’ OR
355 W-DEPARTMENT = '02° :
. 356 MOVE DEPT-1-OR-2 TO W-DEPARTMENT-BONUS
P 357 ELSE IF W-DEPARTMENT = '06' OR
- 358 W-DEPARTMENT = '09° :
A 359 MOVE DEPT-6-OR-9 TO W-DEPARTMENT-BONUS !
) 360 ELSE IF W-DEPARTMENT = °05°' OR L
, 361 W-DEPARTMENT = '07°
362 MOVE DEPT-5-OR-7 TO W-DEPARTMENT-BONUS
. 363 ELSE IP W-DEPARTMENT = ‘04’
o 364 MOVE DEPT-4 TO W~DEPARTMENT-BONUS B
N 365 eLse
Y, §2g MOVE DEPT-OTHER TO W-DEPARTMENT-BONUS.
A 368 CALCULATE-VOLUME-BONUS. ;J
_ 369 COMPUTE W-AVERAGE-MONTHLY-SALES ROUNDED =
i ! 4 370 (W-YEAR~TO-DATE-SALES + W-CURRENT-SALES)
371 / W-MONTHS-EMPLOYED. ;
! ’ 372 IP W-AVERAGE-MONTRLY-SALES ¢ 500 }
S 373 MOVE LEVEL-1 TO W-VOLUME-BONUS
i 374 ZLSE IF W-AVERAGE-MONTHLY-SALES < 999.99
o, 375 MOVE LEVEL-2 TO W-VOLUME-B8ONUS :
i 376 ELSE IF W-AVERAGE-MONTALY-SALES < 1999.99 1~
) 13 377 MOVE LEVEL-3 TO W-VOLUMEZ-BONUS .
S 378 eLse
l: ;:: NOVE LEVEL-4 TO W-VOLUNEZ-BONUS. ,
¢ Ry 361 COMMISSION-CALCULATION. 5 !

G L ke £ i
e T

163

;:g PERPORM VALIDATION.

384 IP VALID-DATA-FLAG = °'YES®

308 PERFORM DATA-MOVE

386 PERFORM CALCULATE-DEPARTMENT-BONUS

387 PERFORM CALCULATE-VOLUME-BONUS

3a8 COMPUTE W-CURRENT-COMMISSION ROUNDED = W-CURRENT-SALES *
389 (W=COMMISSION-RATE + W-VOLUME-BONUS +

390 W=-DEPARTMENT-BONUS)

k} 33 ADD W-YEAR~TO~DATE-SALES TO W-TOTAL~-YEAR-TO-DATE~SALES
392 ADD W-CURRENT~SALES TO W~TQTAL-CURRENT-SALES

393 ADD W-CURRENT~COMMISSION TO W-TOTAL-CURRENT-COMMISSION
394 PERFORM VALID-DATA-OUTPUT

395 ELSE

396 PERFORM INVALID~DATA-OUTPUT.

397

398 READ CARD-PILE

399 AT END MOVE 'NO' TO MORE-DATA-REMAINS-PLAG.

400 ' i
401 VALID~DATA-QUTPUT. |
402 MOVE W-STORE-NUMBER TO O-STORE-NUMBER.

403 MOVE W-DEPARTMENT TO O-DEPARTMENT.

404 MOVE W-SALESMAN-NUMBER TO O-SALESMAN-NUMBER.

405 MOVE I~-SALESMAN-NAME TO O-SALESMAN-NAME.

406 MOVE W-YEAR-TO-DATE~SALES TO O-¥EAR-TO-DATE-SALES.

407 MOVE W-CURRENT-SALES TO O-CURRENT-SALES.

408 MOVE W-COMMISSION-RATE TO O-COMMISSION-RATE.

409 MOVE W-CURRENT-COMMISSION TO O-CURRENT-COMMISSION.

410 MOVE W-MONTHS-EMPLOYED TO O-~-MONTHS-EMPLOYED.

411 ¢ MOVE 1-SALESMAN-NAME TO O-SALESMAN-NAME.

412 MOVE VALID-DATA-LINE TG LINE-RECORD.

413 WRITE LINE-RECORD AFTER ADVANCING 1 LINES.

414 ADD 1 TO LINE-COUNT.

415 I? LINE-COUNT IS GREATER THAN 10

416 ¢ MOVE 0 TO LINE-~COUNT

417 PERPORM REPORT~HEADER-OUTPUT

418 PERFORM HEADING-OUTPUT.

419

420 INVALID-DATA-QUTPUT.

421 MOVE 1~-CARD-DATA TO O-BAD-DATA.

422 MOVE INVALID-DATA-LINE TO LINE-RECORD.

423 WRITE LINE-RECORD AFTER ADVANCING 1 LINES.

424 ADD 1 TO LINE-COUNT.

425 IF LINE-COUNT 1S GREATER THAN 10

426 MOVE 0 TO LINE-COUNT

427 PERFORM REPORT-HEADER-OUTPUT

:;: PERPORM HEADING-QUTPUT.

430 READING-OUTPUT.

431 MOVE HEADING-LINE-1 TO LINE-RECORD.

432 WRITE LINE-RECORD AFTER ADVANCING 1 LINBS.

433 MOVE HEADING-LINE-2 TO LINE-RECORD.

434 WRITE LINEZ-RECORD APTER ADVANCING 1 LINRS.

438 MOVE SPACES TO LINE-RECORD.

436 WRITE LINE-RECORD APTER ADVANCING 2 LINES.

:gz ADD 4 TO LINE-COUNT.

439 CALCULATED-TOTALS-OUTPUT.

440 MOVE W~TOTAL-YEAR-TO=-DATE-SALES TO O-TOTAL-YEAR-TO-DATE-SALES
441 ROVE W-TOTAL-CURRENT-BALES TO O-TOTAL~CURRENT-SALES.

442 MOVE W~-TOTAL-CURRENT-COMMISSION TO O-TOTAL~CURRENT-COMMISSION
443 MOVE PINAL-TOTAL-LINE TO LINE-RECORD.

::; WRITE LINE<-RECORD APTER ADVANCING 2 LINRS.

Lo weigei

preie gty

- memmrw .

446
447
448
449
450
451
452
453
454
455

REPORT-HEADER-OUTPUT.
ADD 1 TO O-PAGE-NUMBER.
MOVE REPORT-LINE-1 TO LINE-RECORD.
WRITE LINE-RECORD APTER ADVANCING TO-T0P-OF-PAGE.
MOVE REPORT-LINE~-2 TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
MOVE SPACES TO LINE-RECORD.
WRITE LINE-RECORD APTER ADVANCING 3 LINES.
MOVE 4 TO LINE-COUNT.

[esu———

FD

0l

1 2 1
L2]
htee
(1 1]
aoe

ro

01

e T

PROGRAN ¢

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINTNFS.
RENMARKS. THIS PROGRAM IS ADAPTED FROM YOURDAN'S ®LEARMING

TO PROGRAM IN STRUCTURED COBOL®,

(1) THE PROGRAM AS PUBLISHED DID NOT WORK. THE LAST
PAIR OF APPLICATION CARDS WAS IGNORED. IF TRERE

WAS NO LAST PAIR (EMPTY FILE) THE PROGRAM BOMBED.

THIS ERROR WAS FIXED BY ADDING ANOTHER PFPILE-CONTROL
FLAG AND ADDING LOGIC IN “B1-GET-A-PAIR...®

(2) THE NOTE ABOUT CHECKING PAIR VALIDITY

IN PARAGRAPH “A2-UPDATE MASTER® SHOULD BE REPEATED

IN THE ANALOGOUS PARAGRAPH “A4-ADD-REMAINING-CARDS®.
3) IF THE FIRST CARD IS INVALID, ITS LOG ENTRY
WOULD HAVE BEEN WRITTEN BEZFORE TRAE LOG FILE HEADER.
(4) THE PUBLISHED PROGRAM COMTAINED MUCH EXTRANEOUS
CODE. THE REASON FOR SOME OF THIS WAS THE FREE USE OF
THE "COPY® VERB. THESE PRODUCED NANY UNNECESSARY
MUTANTS, AND HAVE BEEN COMMENTED QUT WITH “ee¢ec,

(5) THE PROGRAM DID NOT DO ANYTHING SENSIBLE WHEN
THE END-OF-FILE WAS ENCOUNTERED AFTER TRE PIRST OF A
PAIR OF CARDS.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME,
OBJECT-COMPUTER. PRIME,
INPUT-OUTPUT SECTION.
PILE-CONTROL.

SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUTI.
SELECT UPDATE-LISTING ASSIGN TC QUTPUTI.
SELECT CREDIT-MASTER-OLD-PILE ASSIGN TO INPUT2.
SELECT CREDIT-MASTER-NEW-PILE ASSIGN TO OUTPUTZ.

DATA DIVISION.
FILE SECTION.

APPLICATION-CARDS-PILE

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS ARE OMITTED

DATA RECORD IS NAME-ADDRESS-AND-PHONE-IN.
NAME-ADDRESS-AND-PHONE-IN.

0S5 NAME-AND-ADDRESS-IN,

10 NAME-IN PIC X(20).
10 ADDRESS=~IN.
15 STREET-IN PIC X(20).
15 CITY-IN . PIC X(1)).
15 STATE-IN PIC xX.
15 ZIip~-IN PIC X(S).
10 ADDRESS-IN PIC X(40).
05 PHONE-IN PIC X(11).
0S PILLER Pic x.
0S CHANGE-CODE-IN PIC XX.
05 ACCT-NUN-IN) PIC 9(8).

UPDATE-LISTING

RECORD CONTAINS 132 CHARACTERS

LABEL RECORDS ARE OMITTED

DATA RECORD 18 PRINT-LINE~OUT.

PRINT-LINE-OUT PIC X(132).

CREDIT-MASTER-OLD-PILE

165

62 RECORD CONTAINS 127 CHARACTERS

63 LABEL RECORDS ARE STANDARD

64 DATA RECORD IS CREDIT~MASTER-RECORD.

65 Q! CREDIT-MASTER~OLD=-RECORD.

66 05 ACCT-NUM-MAS-OLD PIC 9(6) .

67 s%¢ THE SUBFIELDS ARE NEVER REFERRRED TO IN THE PROGRAM
68 ¢4 USE FILLER INSTEAD '
69 #¢¢ (05 NAME-AND~ADDRESS-MAS-QLD.

70 wee 10 NAME~MAS-OLD PIC X(20).
71 eee 10 STREET-MAS-OLD PIC X(20).
72 eee 10 CITY-MAS-OLD PIC X(13).
73 eee 10 STATE-MAS-OLD PIC XX. ;
78 ewe 10 2ZIP-MAS-OLD PIC 9(%). :
75 *e¢ (0S PHONE-MAS-OLD.
76 eee 10 AREA-CODE-MAS-OLD PIC (M, ;
77 eee 10 NUMBER-MAS-OLD PIC 9(7). !
78 CEBEPNAROEPRNRECREROOERACRNOCOCOCONRV00200CGAPNACEODORACES
19 05 FILLER PIC X(70).
80 **¢ THE SUBFIELDS ARE NEVER REPERRED TO IN THE PROGRANM.
81 ¢#e¢ 0S CREDIT-INFPO~MAS-OLD. |
g2 eee 10 SEX-MAS-OLD PIC X. w
83 wes 10 MARITAL~STATUS-MAS-OLD PIC X. ‘
84 ee 10 NUMBER-DEPENS-MAS-OLD PIC 99. |
g5 eee 10 INCOME-HUNDREDS-MAS-OLD PIC 9(3). 1
95 eee 10 YEARS-EMPLOYED-MAS-OLD _ PIC 99,
g7 eee 10 OWN-OR-RENT-MAS-OLD PIC X.
g8 eee 10 MORGAGE-OR-RENTAL-MAS~OLD PIC 9(3).
89 wes 10 OTHER-PAYMENTS~MAS-OLD PIC 9(3).
90 05 CREDIT-INFO-MAS-OLD PIC X(16). '
91 05 ACCOUNT-INFO-MAS-OLD.
92 et 10 DISCR-INCOME-MAS-~QLD PIC S9(}).
93 ee 10 CREDIT-LIMIT-OLD PIC 9(4).
94 10 FILLER PIC 59(3).
95 10 FILLER PIC 9(4).
; 96 10 CURRENT-BALANCE-OWING-OLD PIC S9(6)V99.
9; 05 SPARE-CHARACTERS-OLD PIC X120).
9
. 99 FD CREDIT-MASTER-NEW-PILE
: 100 RECORD CONTAINS 127 CHARACTERS
' 101 LABEL RECORDS AREZ STANDARD
g 102 DATA RECORD 1S CREDIT-MASTER-RECORD.
. 103 01 CREDIT-MASTER-NEW-RECORD. I
104 05 ACCT-NUM~MAS~NEW PIC 9(6) .
105 **® 0S5 NAME-AND-ADDRESS-MAS-MEW.
v 106 wee 10 NAME-MAS-NEW PIC X(20). 1
g 107 wee 10 STREET-MAS-NEW PIC X(20). {;
i 108 wee 10 CITY-MAS-NEW PIC X113}, A
{, 109 wee 10 STATE-RAS-NEW PIC XX.
; 110 eee 10 Z2IP-MAS-NEW PIC 9(%) .
: 4 111 0S5 NAME-AND-ADDRESS-MAS-MEW PIC X(60).
oo { 112 05 PHONE-MAS-NEW,
i & 113 10 AREA~CODE-MAS~NEW PIC 9() .
; by 114 10 NUMBR-MAS-NEW PIC 9(T). ~
. , d 118 0S CREDIT-INPO-MAS~NEW. 4
! ! , 116 10 SEX-MAS-NEW PIC X, ‘
oo) 117 10 MARITAL-STATUS-MAS-NEW PIC X. :
- 118 10 NUMBER-DEPENS=MAS-NEW PIC 99,
f p 119 10 INCOME~HUNDREDS-NAS-NEW PIC 9(3). .
) ;?: 120 10 YEARS-EMPLOYED=-MAS-NEW PIC 99. fj
BN B 121 10 OWM-OR-RENT~MAS-NEW PIC X. :
! ; 122 10 MORGAGR~OR-RENTAL-MAS<NEW PIC $()).
2 i 123 10 OTHER-PAYNENTS-MAS-NEM PIC 3(3).
N 124 05 ACCOUNT-INPO-MAS-NEW.
4!§j! 128 10 DISCR-INCOME~-MAS-NEW PIC 89(d).

I g iy 5 o R

~—

-

et O e

i b 5

126
127
128
129
130
131
132
133
134
138
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
158
156
187
158
159

160
161

162

161

164

165

166
167
168
169
170
17

172
173
174
17%
176
m
178
179
180
181
182
183
184
108
186
187
188
109

R e L WDNIP TN

SRR XA Wik il N

R T P

A AR LB 1+

10 CREDIT-LINIT=NAS-NEW
10 CURRENT-BALANCE-OWING-NEW
0S5 SPARE-CHARACTERS=-NIW

WORKING-STORAGE SECTION.

0l

01

01

ese()
toe

et e
aee
eee

0l

CREDIT-INFORMATION~IN.
0S5 CARD-TYPE-IN

05 ACCT-NUM-IN2

05 FILLER

0S5 CREDIT-INPO-IN

0S FILLER

COMMON-WS.

0S CARDS-LEPT

05 NEXT~CARD-THERE

0S5 OLD-MASTER-RECORDS-LEFT
0S NEW-MASTER-RECORDS-LEFT
0S5 PIRST-CARD

0S SECOND-CARD

05 ACCT-NUM-MATCH

05 PAIR-VALIDITY

LOG-HEADER-WSAL.

0S FILLER

0S5 FPILLER :
VALUE 'LOG OF ADDITIONS DELE
05 FPILLER

HEADER-WSAS.
0S FILLER
05 TITLE
VALUE 'CONTENTS OF CREDIT
0S FILLER
APPLICATION~DATA-WSB2.
0S5 NAME-AND-ADDRESS-WS.
10 NAME-WS
10 ADDRESS-WS.
15 STREET-WS
15 CITY-WS
15 STATE-WS
1S ZIP-WS
10 ADDRESS-wWS
0S5 PHONE-WS .
10 AREA-CODE-WS
10 NUMBR-WS
05 PILLER
0S CHANGE~-CODE-WS
0S5 ACCT-NUM-WS
0S CREDIT-INFO-WS.

10 SEZX-WS
88 MALE VALUE ‘M’
68 [FENALE VALUB ‘P,
10 PILLER

10 MARITAL~-STATUS-WS
88 SINGLE VALUE *'S°.
88 MARRIED VALUE ’'N°,
88 DIVORCED VALUE 'D*.
80 WIDOWED VALUE 'W’.

10 PILLER

10 NUNBER-DEPENS-WS

10 PILLER

10 INCOME-NUNDRRDS-WS

10 PILLER

167

PIC 9(4).
PIC S9(6)V99.
PIC X(20).

PIC X.
PIC 9(6).
PIC X.
PIC X(22).
PIC X (S0).

PIC X(3).
PIC X(3).
PIC Xx(3).
PIC X(3).
PIC X(4).
PIC X(4).
PIC X(4).
PIC X(4).

PIC X(47) VALUE SPACES.
PIC X(38)

TIONS AND CHANGES®.

PIC X(47) VALUE SPACES.

PIC X(S1) VALUE SPACES
PIC X(30)

MASTER FILE'.
PIC X(S1) VALUE SPACES

PIC X(20).

PIC X(20).
PIC X(13).
PIC XX.
PIC X(S).
PIC X(40).

PIC 9(3).

PIC X(8).

PIC X VALUE SPACE.
PIC XX.

PIC 9(6).

PIC X.

PIC X.
PIC X.

PIC x.
PIC 9.
PIC X.
PIC 9(3).
PIC X.

190 10 YEARS-EMPLOYED-WS PIC 99.
191 10 PILLER PIC X.
192 10 OWN-OR-RENT-WS PIC X.
193 e 88 OWNED VALUE ‘'O'.
194 o 88 RENTED VALUE 'R°.
195 10 FILLER PIC X.
196 10 MORGAGE-OR-RENTAL-WS PIC 9(3).
197 10 FILLER PIC X.
198 10 OTHER-PAYMENTS-WS PIC 9(3).
199
200 01 UPDATE-MESSAGE-AREA-WSB2. 1
203 0S UPDATE-MESSAGE-AREA PIC X(15).
202
203 01 CREDIT-MASTER-PRINT-LINE.
204 05 FILLER PIC X(4) VALUE SPACES. .
205 05 CREDIT~MASTER-OUT PIC x(128).
206 -
207 01 UPDATE~-RECORD-PRINT-LINE.
208 05 FILLER PIC X(4) VALUE SPACES.
209 05 APPLICATION-DATA-OUT PIC X(102).
20 05 FILLER PIC X(4) VALUE SPACES.
211 05 MESSAGE-AREA-OUT PIC X(15).
: 212
t 213 01 DISCR-INCOME-CALC-FIELDS-WSCS.
214 05 ANNUAL-INCOME-WS . PIC 9(5).
215 0S ANNUAL-TAX-WS PIC 9(5).
216 05 TAX-RATE-WS PIC 9V99 VALUE 0.25.
217 05 MONTHS-IN-YEAR PIC 99 VALUE 12.
218 05 MONTHLY-NET-INCOME-WS PIC 9(4).
219 05 MONTHLY-PAYMENTS-WS PIC 9(4).
220 05 DISCR-INCOME-WS PIC S9(3).
221
222 01 CREDIT-LIMIT-CALC-FIELDS-WSCY.
223 05 CREDIT-FACTOR PIC 9.
224 05 FACTOR1 PIC 9 VALUE 1.
225 05 FACTOR2 PIC 9 VALUE 2.
: 226 05 FACTOR3 PIC 9 VALUE 3.
| 227 05 FACTOR4 PIC 9 VALUE 4.
[228 05 FACTORS PIC 9 VALUE S.
' 229 05 CREDIT-LIMIT-WS PIC 9(4). ,
B 230 05 UPPER-LIMIT-WS PIC 9(4) VALUE 2500. :
. 231 *** NEVER USED {
232 *** 05 TOTAL~-CREDIT-GIVEN-WS PIC 9(7). :
233
k : 234 01 ASSEMBLE-TEL-NUN-WSDI. s
o 23s 05 TEL-NUMBR-WITR-HYPREN. :
b 236 10 EXCHANGE-IN PIC 9(3). 4
: i, 237 10 PILLER PIC X.
5 ¥ 238 10 POUR-DIGIT-NUMBR-IN PIC 9(4). -
r i 239 05 TEL-NUMBR-WITHOUT-HYPHEN. J
‘ 240 10 EXCHANGE PIC 9(3).
| 24; 10 FOUR-DIGIT-NUMBR PIC 9(4).
24
J 243 01 CARD-ERROR-LINE1-WS. "
i ; 244 05 PILLER PIC X(S) VALUE SPACES.
!) 245 05 PILLER PIC X(12)
: 246 VALUE ‘PIRST CARD ‘.
;) 247 05 PIRST-CARD-ERR} PIC X(4). {
¥ ', 248 05 PILLER PIC XX VALUR SPACES, I
1 249 0S NAME-ERR] PIC X(20). '
3 3 250 05 ADDRESS-BRR) PIC X(40).
‘ o 251 05 PHONE-ERR1 PIC X(11). .
t K 252 05 PILLER PIC X(3) VALUR SPACES. C
f d: 253 05 ACCT-NUM-ERR) PIC 9(6). (i
*]
a
!

R e

R

“4“

——e

254
2SS
256
257
258
259
260
261
262
263
264
26S
266
267
268
269
270
271
272
273
274
278
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
308
306
307
3os
309
310
il
2
1)
314
318
316
k}Y)

ol ggRD-!RROR-LINBZ-NS.

PILLER PIC X(S) VALUE SPACES.
05 FPILLER PIC X(12)
VALUE ‘'SECOND CARD ',
05 SECOND-CARD-ERR2 PIC X(4).
05 FILLER PIC X(2) VALUE SPACES.
05 CREDIT-INFO-ERR2 PIC X(80).
05 MESSAGE-ERR-LINE~2 PIC X%(29) VALUE SPACES.

PROCEDURE DIVISION.

AO-MAIN-BODY.
PERFORM Al-INITIALIZE.
PERFORM A2-UPDATE-MASTER
UNTIL OLD~-MASTER-RECORDS-LEPT = *NO *
OR CARDS-LEPT + °*NO '.
IF CARDS-LEFT = 'NO '
. TBERE ARE NORE OLD MASTER REC
PERFORM AJ~COPY-REMAINING-OLD-MASTER
gp UNTIL OLD-MASTER-RECORDS-LEPT = 'NO '
ELSE
. THERE ARZ NO MORE CARDS, SO
PERFORM A4-ADD-REMAINING-CARDS
UNTIL CARDS-LEFT = 'NO °. .
08P R0 0000202 0CORREROROOARNCARVORSRER0ORSQRRCRRORSRREORIARNNERIVRS
* CODE TO LIST THE CONTENTS OF THE NEW MASTER HAS BEEN OMITTED.
* IT WOULD HAVE REQUIRED CLOSING THE NEW MASTER AND REOPENING
* IT FOR INPUT. THIS IS BEYOND THE ABILITIES OF CNS.]
* THE DELETION AMOUNTS TO ABOUT 20 LINES OF CODE.
VRO E RO R RE R0 AN RRORRRORARRARQICRORNRCOCRRONOPORPRRSORRRRARRRCORASY
PERFORM AT~END-0P-JOB.
STOP RUN.

Al-INITIALIZE.

OPEN INPUT APPLICATION~-CARDS-PILE

CREDIT-MASTER-OLD-PILE
OUTPUT CREDIT-MASTER-NEW-FILE
UPDATE~LISTING.

®¢+ USELESS INITIALIZATIONS HAVE BEEN COMMENTED OUT
eee MOVE SPACES TO PIRST-CARD.
¢es MOVE SPACES TO SECOND~CARD.
*es MOVE SPACES TO ACCT~NUM-MATCH.
*e*s MOVE SPACES TO PAIR~VALIDITY.
*¢s MOVE ZEROES TO ANNUAL-INCOME-WS.
¢e*e MOVE ZEROES TO ANNUAL-TAX-WS.
e®s MOVE ZEROES TO MONTHLY-NET-INCOME-WS.
¢ MOVE ZEROES TO NONTHLY-PAYMENTS-WS.
ee¢ MOVE ZEROES TO DISCR~INCOME-WS.
*e® MOVE ZEROES TO CREDIT-PACTOR.
#e¢ MOVE 2EROES TO CREDIT-LIMIT-WS.
*e4 MOVE 2EROES TO TOTAL~CREDIT-GIVEN-WS.

MOVE °*YES® TO CARDS-LEPT.

MOVE °‘YES' TO NEXT-CARD-THERE.

MOVE ‘YES®’ TO OLD-MASTER=-RECORDS-LEPFT.
** THE FOLLOWING STATEMENT WAS MOVED NERE FROM THE END OF THE
®® PARAGRAPH, SO THAT THE HEADER WOULD BE WRITTEN BEFORE THE
®® PIRST LOG RECORD, IP THE PIRST CARD PAIR 18 INVALID.

WRITE PRINT~LINE-OUT PROM LOG-NEADER-NSAl

APTER ADVANCING 3 LINES.
READ APPLICATION-CARDS-PILE
AT END MOVE 'NO ' TO NEXT-CARD-TRERE.

PERPORM B1-GET-A-PAIR-OF~CARDS-INTO-WS THRU Bl1-EXIT.

¢ FIRST PAIR OF CARDS IN WS: PIRST CARD OF SECOND PAIR IN BUPPER

e m——

e S (PC———

——

318
319
320
321
322
323
324
328
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
3s1
352
353
3s4
355
356
357
is8
359
360
361
362
361
364
368
366
367
k[1.
369
370
37
372
73
374
378
376
7
378
179
180
WL

READ CREDIT~MASTER-OLD-FILE
AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEPFT.
* FIRST OLD MASTER RECORD IS IN BUFFER

A2-UPDATE-MASTER.

BEFORE COMPARING THE UPDATE WITH THE MASTER, WE MUST CHECK
¢ THAT WE HAVE A VALID PAIR OF CARDS - IP YOUR PROGRAM DOES
: gOT gAKE THIS TEST, IT WILL ONLY WORK WITH VALID PAIRS OF

ARDS.
IF PAIR-VALIDITY = ’'BAD * :
PERFORM B] -GET-A-PAIR~-QF~CARDS~INTO-WS THRU B]l-EXIT
ELSE IF ACCT-NUM-WS IS GREATER THAN ACCT-NUM-MAS-OLD
. ACCT-NUM-WS IS CARD ACCOUNT NUMBER
MOVE CREDIT-MASTER~OLD-RECORD TO
CREDIT-MASTER-NEW-RECCRD
WRITE CREDIT-MASTER-NEW-RECORD
READ CREDIT~MASTER~OLD-~-FILE
AT END MOVE °'NO ' TO OLD-MASTER-RECORDS-LEPT
ELSE IF ACCT-NUM-WS = ACCT-NUM-MAS-OLD
PERFORM B2-CBANGE-OR-DELETE-MASTER
PERFORM B)-GET-A-PAIR-OF-CARDS-INTO-WS THRU Bl-EXIT
READ CREDIT~MASTER-OLD-FILE
AT END MOVE 'NO ' TO OLD~MASTER-RECORDS-LEFT

ELSE
. ACCT-NUM-WS IS LESS THAN
* ACCT~NUM-MAS~OLD
PERFORM B3-ADD-NEW~MASTER
PERFORM Bl-GET-A-PAIR-OF~-CARDS~INTO-WS THRU Bl1-EXIT.

A3-COPY-REMAINING-OLD-MASTER.
MOVE CREDIT-MASTER-OLD~RECORD TO
CREDIT-MASTER-NEW-RECORD
WRITE CREDIT-MASTER~NEW-RECORD.
READ CREDIT-MASTER-OLD-FILE
AT END MOVE 'NO ' TO OLD-MASTER-RECORDS~-LEFT.

A4-ADD-REMAINING-~CARDS.
IF PAIR-VALIDITY = °'BAD ' NEXT SENTENCE
ELSE PERFORM B3-ADD-NEW-MASTER.
PERFORM Bl~GET-A-PAIR~OF-CARDS~INTO-WS THRU Bl-EXIT.

A7-END-OF-J0B.

CLOSE APPLICATION-CARDS~FILE
CREDIT~MASTER-OLD-FILE
CREDIT~MASTER-NEW~FILE
UPDATE~LISTING.

B1~GET~A-PAIR-OP~CARDS-INTO-WS.
I¥ NEXT-CARD-THERE = 'NO *
MOVE *NO ' TO CARDS-LEPT
GO TO B}-EXIT.-
PERFORM ¢ - -EDIT-PIRST-CARD.
PERFORM C. MOVE-PIRST-CARD-TO-WS.
READ APPLICATION~CARDS~FILE INTO CREDIT-INPORMATION-IN
AT END MOVE 'NO ' TO CARDS-LEPT,
MOVE SPACES TO CREDIT-INPORMATION-IN
ACCT-NUM-MATCH
MOVE 'NONE' TO SECOND-CARD
PERFORM Cd-PLUSH-CARDS-TO-ERROR-LINES
GO TO B1-EXIT.
PERPORM CI-EDIT-SECOND-CARD.
IF (PIRST-CARD = 'GOOD')
AND (SECOND-CARD = 'GOOD')
AND (ACCT-NUM-MATCH = 'GOOD‘)

N~ Awd

© e aia i o rerpeoe o

171

382 MOVE *GOOD® 70 PAIR=-VALIDITY
383 MOVE CREDIT-INFO-IN TO CREDIT-INPO-WS
384 ELSE
385 MOVE *BAD * TO PAIR-VALIDITY
386 PERFORM C4~PLUSH~CARDS-TO-ERROR-LINES.
387 READ APPLICATION-CARDS-FILE
388 AT END MOVE 'NO ' TO MEXT-CARD-THERE,
389
) 390 BI-EXIT. EXIT.
! 391
; 392 B2-CHANGE-OR-DELETE-MASTER.
393 IF CHANGE-CODE-WS = ‘CH'
194 PERFORM CS5~MERGE-UPDATE~WITH-OLD-MAST
395 MOVE *RECORD CHANGED' TO UPDATE-MESSAGE-AREA
\ 396 PERPORM C6-LOG-ACTION
: 197 WRITE CREDIT-MASTER-NEW-RECORD
\ 398 ELSE IP CHANGE-CODE-WS = ‘DE’
, 399 » CHECK IP DELETE IS VALID
; 400 IF CREDIT-INFO-WS IS EQUAL TO SPACES
t 401 MOVE ‘RECORD DELETED' TO UPDATE-MESSAGE-AREA
: 402 PERFORM C6-LOG-ACTION
‘ 403 ELSE
) 404 MOVE 'REC NOT DELETED' TO UPDATE-MESSAGE-AREA
| 405 MOVE CREDIT-MASTER-OLD~RECORD TO
406 CREDIT-MASTER-NEW~RECORD
407 PERFORM C6-LOG~-ACTION ,
408 WRITE CREDIT-MASTER-NEW-RECORD ‘
409 ELSE |
410 MOVE 'BAD CHANGE CODE‘ TO UPDATE-MESSAGE-AREA
411 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-NEW-RECORD
412 PERFORM C6-LOG-ACTION
413 WRITE CREDIT-MASTER-NEW-RECORD.
414
. 415 BI-ADD-NEW-MASTER.
416 PERFORM C8-CALC-DISCRETNRY-INCOME.
a7 PERFORM C9-CALC-CREDIT-LIMIT.
P 418 PERFORM C10-ASSEMBLE-NEW-MASTER-RECORD.
P 419 MOVE 'RECORD ADDED ° TO UPDATE-MESSAGE-AREA.
420 PERFORM C6-LOG-ACTION.
'4 421 WRITE CREDIT-MASTER-NEW-RECORD.
: 422
' 423 C1-EDIT-PIRST-CARD.
| 424 MOVE 'GOOD' TO FIRST-CARD.
i 425 IP NAME-IN IS EQUAL TO SPACES
. 426 MOVE '#4# NAME MISSING **¢° TO NAME-IN
i) 427 MOVE 'BAD * TO PIRST-CARD.
vl 428 IP ADDRESS-IN IS EQUAL TO SPACES
i 429 MOVE *#%* ADDRESS MISSING ¢#ee' TO ADDRESS-IN
l y 430 MOVE *BAD ' TO PIRST-CARD.
, ,i 431 IP PHONE-IN IS EQUAL TO SPACES
S 432 MOVE ‘NO PHONE **' TO PHONE-IN
. ! ; 433 MOVE *BAD * TO PIRST-CARD.
SR 434
i y 435 C2-MOVE-PIRST-CARD-TO-WS.
Y 436 MOVE NAME-IN TO NAME-NWS.
. I 437 MOVE ADDRESS-IN TO ADDRESS-WS.
) L 438 MOVE PHONE-IN TO PHONE-MS.
=9; 439 MOVE CHANGE~CODE-IN TO CHANGR-CODR-WS.
1 & 440 MOVE ACCT-NUM-IN) TO ACCT-MUN-WS,
v a1
lf | 442 C3-EDIT-SECOND-CARD.
; d A 4“3 MOVE °GOOD’ TO SECOND=CARD.
i ne MOVE ‘GOOD* TO ACCT-NUM~MATCN.
‘ b aas 1P CARD-TYPE-IN IS NOT EQUAL TO ‘C*
i
SRR
e
ri
j J ‘ (X
1 3
1
! i .
o

|
|

{
!
446 MOVE *BAD * TO SECOND-CARD.
447 IF ACCT-NUM-IN2 TS NOT EQUAL TO ACCT-NUM-MWS
448 MOVE °'BAD ' TO ACCT-NUM-MATCH.
449
450 C4-FLUSH-CARDS~TO-ERROR-LINES.,
451 MOVE FIRST~CARD TO PIRST-CARD-ERR].
452 MOVE NAME-WS TO NAME-ERR!.
453 MOVE ADDRESS-WS TO ADDRESS~ERR].
454 MOVE PHONE-WS TO PHONE-ERR!.
485 MOVE ACCT-NUM-WS TO ACCT-NUM-ERR],
) 456 MOVE SECOND-CARD TO SECOND-CARD-ERR2.
: t 457 we MOVE CREDIT-INFO-WS TO CREDIT-INFO-ERR2.
| i 458 ®* THE PREVIOUS LINE WAS IN ERROR (BY A SINGLE MUTATION) IN THE
8 459 ¢ PUBLISHED PROGRAM. TNE CORRECT STATEMENT IS:
! 460 MOVE CREDIT-INFO-IN TO CREDIT-INFO-ERR2.
| : 461 IF ACCT-NUM-MATCH = °'BAD °*
| : 462 MOVE *ACCOUNT NUMBERS DO NOT MATCH' ;
{ : 462 TO MESSAGE~ERR-LINE-2
‘ 464 ELSE
485 MOVE SPACES TO MESSAGE-ERR-LINE-2.
B 436 e*% MOVE SPACES TO PRINT-LINE-OUT.
! 467 WRITE PRINT-LINE-OUT FROM CARD-ERROR-LINE]-WS
' 468 AFPTER ADVANCING 3 LINES.
f ‘ 469 #** MOVE SPACES TO PRINT-LINE-OUT.
470 WRITE PRINT~-LINE-QUT FROM CARD~ERROR-LINE2-WS
i :3§ AFTER ADVANCING 1 LINES.
473 _
474 CS-MERGE-UPDATE-WITH-OLD-MAST.
478 MOVE ACCT=-NUM-MAS~OLD TO ACCT-NUM-MAS-NEW.
476 MOVE NAME-AND-ADDRESS-WS TO NAME-AND-ADDRESS-MAS-NEW.
477 MOVE AREA-CODE-WS TO AREA-CODE-MAS-NEW,
478 PERFORM D1-REMOVE-HYPHEN-PROM-TEL-NUM.
479 * THE SECOND INPUT CARD HAS CREDIT DATA, IF THIS HAS TO BE
480 * UPDATED THEN THE DISCRETIONARY INCOME CALC HAS TO BE RuUN
481 IF CREDIT~INFO-WS IS EQUAL TO SPACES
482 MOVE CREDIT-INFO-MAS-OLD TO CREDIT-INPO-MAS-NEW
482 MOVE ACCOUNT-INFO~MAS-OLD TO ACCOUNT-INFO~MAS=-NEW
i 484 ELSE
: i 485% PERFORM C8-CALC-DISCRETNRY-INCOME
486 PERPORM C9-CALC-CREDIT-LIMIT
487 MOVE SEX-WS TO SEX-MAS-NEW
488 MOVE MARITAL-STATUS-WS TO MARITAL-STATUS-MAS-NEW
; 489 MOVE NUMBER~-DEPENS-WS TO NUMBER-DEPENS-MAS-NEW
! 490 MOVE INCOME-HUNDREDS-WS TO INCOME-HUNDREDS~MAS-NEW
‘ 491 MOVE YEARS~EMPLOYED-WS TO YEARS-EMPLOYED-MAS-NEW
. 492 MOVE OWN-OR-RENT-WS TO OWN-OR-RENT-MAS-NEW
. 493 MOVE MORGAGE-OR-RENTAL-WS TO MORGAGE-OR-RENTAL-MAS-NEW
' 494 MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-MAS-NEW
' 495 MOVE DISCR=-INCOME-WS TO DISCR-INCOME~-MAS-NEW
. 496 MOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT~MAS-NIW,
497 MOVE CURRENT-BALANCE-OWING-OLD TO CURRENT-BALANCE-OWING-NEW,
5, :ga MOVE SPARE-CHARACTERS~OLD TO SPARE~CHARACTERS-NEW.
: 9
500 C6-LOG-ACTION.
! 501 IP CHANGE-CODE-WS = *'CH®
: , 502 o WRITE OLD TAPE RECORD
S03 * WRITE CARD CONTENTS & MESSAGE
S04 * WRITE NZW TAPE RECORD

) i 505 eee MOVE SPACES T0 CREDIT-MASTER-PRINT-LINE
. MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-QUT
WRITE PRINT-LINE-OUT PROM CREDIT-MASTER-PRINT-LINE
APTER ADVANCING 3 LINES
see MOVE SPACES T0 UPDATE-RECORD-PRINT-LINE

e A m—— ..

~———

51lo
511
512
513
514
515
516
517
518
519
520
521
S22
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
$50
551
552
553
554
555
556
$57
558
559
$60
561
562
563
564
565
566
567
558
569
570
571
572
573

173

MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-QUT
MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-QUT
WRITE PRINT-LINE-OUT FROM UPDATE~RECORD-PRINT-LINE
AFTER ADVANCING 1 LINES
eos MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT
WRITE PRINT-LINE-QUT FROM CREDIT-MASTER-PRINT-LINE

AFTER ADVANCING 1 LINES f
ELSE IF CHANGE-CODE-WS = 'DE*
. WRITE OLD TAPE RECORD
. WRITE CARD CONTENTS & MESSAGE
oo MOVE SPACES TO CREDIT-MASTER-PRINT-LINE

MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
AFPTER ADVANCING 3 LINES .
oo MOVE SPACES TO UPDATE~RECORD-PRINT-LINE i
MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT ,
MOVE UPDATE-MESSAGE~AREA TO MESSAGE-AREA-OUT ¢
WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE

AFTER ADVANCING) LINES

ELSE IF CHANGE-CODE-WS = ' ¢

hd WRITE CARDS FOR ADDITION
* WRITE NEW TAPE RECORD 4
‘oo MOVE SPACES TO UPDATE-RECORD-PRINT-LINE

MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT

MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT

WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
AFTER ADVANCING 3 LINES

wee MOVE SPACES TO CREDIT-MASTER-PRINT-LINE

MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT~-MASTER-OUT

WRITE PRINT-LINE-OUT FROM CREDIT-MASTER~PRINT-LINE
AFTER ADVANCING 1 LINES

ELSE
. WRITE CARD CONTENTS & MESSAGE
MOVE APPLICATION~DATA-WSB2 TO APPLICATION-DATA-OUT
MOVE UPDATE=MESSAGE-AREA TO MESSAGE-AREA-OUT
WRITE PRINT=LINE-QUT FROM UPDATE~RECORD~PRINT-LINE
APTER ADVANCING 3 LINES.

CB8-CALC-DISCRETNRY-INCOME.
COMPUTE ANNUAL-INCOME-WS = INCOME~HUNDREDS-WS * 100.
COMPUTE ANNUAL-TAX-WS » ANNUAL-INCOME-WS * TAX-RATE-WS,
COMPUTE MONTHLY~NET-INCOME-WS ROUNDED
® (ANNUAL-INCOME-WS -~ ANNUAL-TAX-WS) / MONTHS-IN-YEAR.
COMPUTE MONTHLY~PAYMENTS-WS & MORGAGE-OR-RENTAL-WS
+ OTRER-PAYMENTS-WS.
COMPUTE DISCR-INCOME-WS » MONTHLY-NET-INCOME-WS
= MONTHLY-PAYMENTS~WS
ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS,
. DISCRETIONARY INCOMES OVER $999 PER MONTH ARE SET AT $999.

C9-CALC-CREDIT-LINIT.

. MARRIED? YYYYNNNN THIS DECISION TABLE .
. OWNED? YYNNYYNN SETS OUT CONPANY POLICY *
. 2 OR MORE YEARS? Y N Y N YN Y N POR DETERMINING CREDIT ¢
. w= LIMIT PROM DISCRETIONARY*
. CREDIT PACTOR1 X X INCOME. FACTOR] ETC ARE *
. LINIT 2 X X SET UP IN WSCH9. *
. MULTIPLE 3 X .
4 OP DISCR. 4 xx *
. INCOME s X .

IF MARITAL~STATUS-WS = 'M*
1P OWN-OR-RENT-WS = '0O°

Cowe

574
578
576
$7?
578
579
580
581
582
s$83
584
585
586
587
588
589
590
591
592
593
594
595
59%
597
598
599
600
601
502
603
604
605
506
507
508
509
610
611
612
613
614
615
616
617
618
619

S VMR RN G s K

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02
s MOVE FACTORS TO CREDIT-PACTOR
ELSE
e MOVE PACTOR4 TO CREDIT-FACTOR
" ELSE
IF YEARS-EMPLOYED-WS 1S NOT LESS THAN 02
MOVE FACTOR4 TO CREDIT-FPACTOR
ELSE
MOVE FACTOR2 TO CREDIT-FACTOR
ELSE :
IF OWN~OR-RENT-WS = ‘'0O*
IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02 i
MOVE FACTOR3 TO CRELIT-FACTOR .
- ELSE
MOVE FACTOR2Z TO CREDIT-FACTOR .
ELSE
MOVE FACTOR] TO CREDIT-FACTOR. ;
COMPUTE CREDIT-LIMIT-WS = DISCR~INCOME-WS * CREDIT-FACTOR.
IF CREDIT-LIMIT-WS IS GREATER THAN UPPER-LIMIT-WS i
MOVE UPPER~LIMIT~WS TO CREDIT-LIMIT-WS. :
e¢ ADD CREDIT~LIMIT-WS TO TOTAL~CREDIT-GIVEN-WS. i |

Cl10-ASSEMBLE~NEW-MASTER-RECORD.
MOVE ACCT-NUM-WS TO ACCT-NUM-MAS-NEW. T
MOVE NAME-AND-ADDRESS~WS TO NAME-AND~ADDRESS-MAS-NEW. i
MOVE AREA-CODE-WS TO AREA-CODE-MAS-NEW, -
PERFORM D1-REMOVE=-HYPHEN-FROM-TEL-NUM.

MOVE SEX-WS TO SEX-MAS-NEW

MOVE MARITAL-STATUS-WS TO MARITAL-STATUS=-MAS-NEW .
MOVE NUMBER-DEPENS-WS TO NUMBER-DEPENS~-MAS-NEW i
MOVE INCOME-HUNDREDS=-WS TO INCOME-HUNDREDS~-MAS~-NEW

MOVE YEARS-EMPLOYED-WS TO YEARS-EMPLOYED~-MAS~-NEW

MOVE OWN-OR-RENT-WS TO OWN-OR-RENT-MAS-NEW

MOVE MORGAGE-OR-RENTAL-WS TO MORGAGE~OR-RENTAL-MAS-NEW

MOVE OTRER-PAYMENTS-WS TO OTHER-PAYMENTS-MAS-NEW.

MOVE DISCR-INCOME-WS TO DISCR-INCOME-MAS-NEW.

MOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW.

MOVE ZEROES TO CURRENT-BALANCE-OWING-NEW.

MOVE SPACES TO SPARE~-CHARACTERS-NEW.

D1-REMOVE-HYPHEN-FROM-TEL-NUM.
MOVE NUMBR-WS TQO TEL~-NUMBR-WITH-HYPHEN '
MOVE EXCHANGE~IN TO EXCHANGE '
MOVE FOUR~DIGIT-NUMBR-IN TO POUR-DIGIT-NUMBR
MOVE TEL-NUMBR-WITHOQUT-HYPHEN TO NUMBR-MAS-NEW.

N
e ad

I T e srairsoe SRAAS S < e b

BIBLIOGRAPHY

: (1] A. Acree, T. Budd, R. DeMillo, R. Lipton, and F.
: Sayward, "Mutation Analysis®", Georgia Institute of

: Technology Technical Report GIT-1CS-79/08, September,

[2] Fortran Automated Verification System (FAVS), Volume I,
| H User's Manual, General Research Corp., Santa Barbara,
B 3y Cao' Jano 197Q.

(3] D. Baldwin and F. Sayward, "Heuristics for Determining
Equivalence of Program Mutations,” Yale University,

; Department of Computer Science Researchk Report, ©No,]
‘ 276, 1979,

(4] R.S. Boyer, B. Elspas, and K.N., Levitt, "SELECT - A
Formal System for Testing and Debugging Programs by
Symbolic Executioa", in Proc, Int., Cont. on Reliable
Software, Apr. 1975, pp 234-244,

[5] T. Budd, R.A.DeMillo, R.J. Lipton, and F.G. Sayward,
"The Design of a Prototype Mutation System for Program
Testing,” Proc. 1978 NCC, AFIPS Conterence Record, pp.
523-627.

f» {51 T.A. Budd, R.A. DeMilloe, R.J. Lipton, and F.G.

Sayward, "Theoretical and Empirical Studies in Program
: Mutation to Test the Functional Correctness of
} Programs”, submitted for publication, 1979,

Mutation,” Digest for the Workshop on Software Testing
and Test Documentation , Fort Lauderdale, Ffla, 1978,

\ pp. 324-334.
‘ .
'

;t} (7) 3. Burns, "The stability of Test Data from Program

(8] L.A, Clark, "A system to Generate Test Data ad
Symbolically Execute Programs”, IEEE Transactions on

Sofcware Engineering, Vol 2, Sept ' PP - .
) ;4 (9] L.A. Clark, "Automatic Test DAta Selection Tectniques”,

Software Testing, Volume 2, Infotech International,
oPP - .

(10)] R.A. DeMillo, R.J. Lipton and A.J. Perlls, "Social
b Processes and Proofs ot Theorems and Programs," CACM,
{ Vol 22(S), (May, 1979), pp. 271-280.

(11)

(12}

{13]

f14)]

(151

(16]

R e R i S AN ST

R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints
on Test Data Selection:Help for the Practicing
Programmer,” Computer,

April, 1978, pp. 34-41.

R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Program
Mutation: A New Approach to Program Testing,” INFOTECH

State of tke Art Report on Software Testing, VoI, 2,
INFOTECHA/SRR, 1979, ppP. I07-127 (Note: also see

comrmentaries in Volume 1}.

T. Gilb, Software Metrics, Winthrop, 1977.

J. Goodenougk and S. Gerkart, "Toward a Theory gt
Test Data Selection," IEEE Trans. Software Engin., Vol
SE-1 , (June, 1975), pp. 156-173.

Concepts of Automated Testing Analysis, (RP=1),
Sottware Technology Center, Science Applications, Inc.,
San Francisco, Ca.

W.E. Howden, "Reliability of the Path Analysis Testing
Strategy,” IEEE Trans. Software Engineering, Vol.
SE~2(3) (September, 1975), PP. 203-214.

W.E. Howden, "An Evaluation of the Effectiveness of
Symbolic Testing,” Software Practice and Experience,
Volume 8, (1978), pp. 3381-397,

"A New Approach to Program Testing®, in Proc. Int.
Conf. Reliable Software, Apr. 1975, pp 22%3-233.

R.J. Lipton and F.G., Sayward, "The Status of Research
on Program Mutation,"” Digest of the Aorkskop on
Software Testing and Test Documentation,” Fort
Lauderdale, Fla, 1978, pp. 355-373.

Z. Manna and R. Waldinger, "The Logic of Computer
Programrming”®, IEEE Transactions on Sotftware
Engineering, Vol SE-4(3), (September, 1973), pploo-229.

W.D. Maurer, latter in "ACM Forum"”, Comrmunications of
the ACM, vol, 22 no. 11, Nov 1979, pp 525-529.

E.F. Miller, Jr., Methodology for Comprerensive
Software Testing, General Research Corporation, Santa
Barbara, CA, June 1975

D.C. Montgomery, Design and Analysis of Experirerts,
Wiley, New York, 1973

o

T SRR

(24}

(25]

L.J. Osterweil and L.D. Fosdick, “Experience with
DAVE=-~- A Fortran Program Analyzer, Proc. 1976 NCC,
AFIPS Conference Record, pp 909-91S5,

L.J. Osterweil and L.D. Fosdick, "Data Flow Analysis
as an Aid in Documentation, Assertion Generation,
vValidation and Error Detection, University of Colorado,

Department of Computer Science, Technical Report No.
CU-CS=055~74, 1974.

(26 R.A. Overbeek and W.E. Singletqgary, ANS Cobol: A

[27)

[28]

(29]

(30}

[31]

(32]

(33]

(34]

Pragqmatic Approachk, McGraw=Hill, New York, 1975.

M.R. Paige, "Program Graphs, an Algebra, and Their
Implication for rogramning®”, IEEE Transactions on
Software Engineering, Sept.75, pp286-291.

PRIME Fortran Programmer's Gulde, PDR3057, PRIME
Computer, Inc. PFramingkam, Mass. p 4-5.

J.H. Rowland and P.J. Davis, "On the use of
Trancendentals for rogram Testing”, March 1979,
submitted to JACM.

Automated Testing Analyzer for Cobol, Software
Technology Center, Science Applications, Inc. San
Francisco, Ca., April, 1975,

T.A. Thayer, M, Lipow, E.C. Nelson, Sotftware
Reliability, North-Holland, 1973.

E.A. Younqgs, "Human Errors in Prograrming,”

Internatioral Journal of Man-Machkine Studies, Volume 5

Ew Yourdan, C., Gane, and T, Ssarsan, Learning to
Program in Structured Cobol, Yourdan, Inc., New York,
1975 ‘

3. Williams, "Program Checking®™, Proceedings of the
SISPLAN Symposium on Comptiler Construction, Denver,
Colorado, in SIGPLAN Notices, Vol.14(8), Aug 1979, pp
13-25,

SECURITY CLASSIFICATION OF THiS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

1. REPORY NUMBER

GIT-1CS-80/12 Ap- Ae%1¢29 ﬁ

4. TITLE (and Subtitle) S. TYPE OF REPORYT & PERIOD COVERED

On Mutation Interim Technical Report
6. PERFORMING ORG. REPORT NUMBER

GIT-1CS-80/12 ~—

7. AUTHOR(=) §. CONTRACT OR GRANT NUMBER(S)
ARO Grant #DAAG29-80-C-0120
Allen Troy Acree, Jr. ONR Grant #N00014-79-C-0231

i AME AND ADDRE 10. PROGRAM ELEMENT, PROJECT, TASK
i 9. PERFORMING ORGANIZATION NAM] S AREA S WORK UNIT NUMBERS

School of Information and Computer Science .
Georgia Institute of Technology
Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

G T AvGosT /980

13. NUMBER OF PAGES

Lt . %
Rese.r2 . SRR 1774y
14. MONITORING AGENCY NAME & ADORESS(If different trom Controlling Office) 15. SECURITY CLASS. (of this report)

carwe e

Unclassified

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

e o T eevevivi Approved for public release;
Ll il ., Dismb“ﬁon U]. .ted

T TP I R vA R WP O W e 053

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report)

’ !
D ——

1 18. SUPPLEMENTARY NOTES
}: _"_:‘"‘_”' oA parmass EL N S A ARG TR t\- TS T 1
1 [:

19. KEY WORDS (Continue on reverse side If 'y and identify by block number)

competent programmer assumption, coupling hypothesis, mutant equivalence, _
mutation, testing, validation ;

“F26. ABSTRACT (Cantimue an reverse oddd N nesoscasy and identily by bleck number)
Program Mutation 1s a method for testing computer programs which is effective at
3 s uncovering errors and is less expensive to apply than other techniques. Working
mutation systems have demonstrated that mutation analysis can be performed at an
attractive cost on realistic programs. In this work, the effectiveness of the
method is studied by experiments with programs in the target application spaces.

P N RTIP Y TR

DD uun 73 Eoimom OF ' NOV 68 18 OREOLE TR

